Solveeit Logo

Question

Question: Express in the form \[A + iB\] \[\left( {\dfrac{{1 + \sin \alpha + i\cos \alpha }}{{1 + \sin \alph...

Express in the form A+iBA + iB
(1+sinα+icosα1+sinαicosα)\left( {\dfrac{{1 + \sin \alpha + i\cos \alpha }}{{1 + \sin \alpha - i\cos \alpha }}} \right)
A) cos(nπ2nα)isin(nπ2nα)\cos \left( {\dfrac{{n\pi }}{2} - n\alpha } \right) - i\sin \left( {\dfrac{{n\pi }}{2} - n\alpha } \right)
B) cos(nπnα)isin(nπnα)\cos \left( {n\pi - n\alpha } \right) - i\sin \left( {n\pi - n\alpha } \right)
C) cos(nπ2nα)+isin(nπ2nα)\cos \left( {\dfrac{{n\pi }}{2} - n\alpha } \right) + i\sin \left( {\dfrac{{n\pi }}{2} - n\alpha } \right)

Explanation

Solution

We are required to express the given expression in the A+iBA + iB form. To solve this question, we will first manipulate our expression using the various trigonometric identities and formulas to simplify it to the simplest form. We will then express it as an exponential and then simplify further to obtain the answer.
Formula Used: We will use the following formulas to solve our question,

  1. sinθ=cos(90θ) =cos(π2θ)\begin{array}{l}\sin \theta = \cos \left( {90 - \theta } \right)\\\ = \cos \left( {\dfrac{\pi }{2} - \theta } \right)\end{array}
  2. cosθ=sin(90θ) =sin(π2θ)\begin{array}{l}\cos \theta = \sin \left( {90 - \theta } \right)\\\ = \sin \left( {\dfrac{\pi }{2} - \theta } \right)\end{array}
  3. 1+cos2θ=2cos2θ1 + \cos 2\theta = 2{\cos ^2}\theta
  4. sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
  5. eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta
  6. eiθ=cosθisinθ{e^{ - i\theta }} = \cos \theta - i\sin \theta

Complete step by step solution:
Let us substitute sinα\sin \alpha and cosα\cos \alpha in the given expression using the identities sinθ=cos(π2θ)\sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right) and cosθ=sin(π2θ)\cos \theta = \sin \left( {\dfrac{\pi }{2} - \theta } \right) respectively.
Consider sinθ=cos(π2θ)\sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right). Substitute θ\theta with α\alpha in this equation. On doing so we get,
sinα=cos(π2α)\sin \alpha = \cos \left( {\dfrac{\pi }{2} - \alpha } \right)
Consider cosθ=sin(π2θ)\cos \theta = \sin \left( {\dfrac{\pi }{2} - \theta } \right). Substitute θ\theta with α\alpha in this equation. On doing so we get,
cosα=sin(π2α)\cos \alpha = \sin \left( {\dfrac{\pi }{2} - \alpha } \right)
So, now based on the above modifications, we will substitute the values in our expression. On doing so we get,
\left( {\dfrac{{1 + \sin \alpha + i\cos \alpha }}{{1 + \sin \alpha - i\cos \alpha }}} \right) = \left\\{ {\dfrac{{1 + \cos \left( {\dfrac{\pi }{2} - \alpha } \right) + i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}{{1 + \cos \left( {\dfrac{\pi }{2} - \alpha } \right) - i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}} \right\\}……………….(1)\left( 1 \right)
We will now use the identity 1+cos2θ=2cos2θ1 + \cos 2\theta = 2{\cos ^2}\theta to substitute 1+cos(π2α)1 + \cos \left( {\dfrac{\pi }{2} - \alpha } \right) in the above expression.
Let us compare 1+cos2θ1 + \cos 2\theta with 1+cos(π2α)1 + \cos \left( {\dfrac{\pi }{2} - \alpha } \right).
1+cos2θ=1+cos(π2α) cos2θ=cos(π2α) 2θ=(π2α)\begin{array}{l}1 + \cos 2\theta = 1 + \cos \left( {\dfrac{\pi }{2} - \alpha } \right)\\\ \Rightarrow \cos 2\theta = \cos \left( {\dfrac{\pi }{2} - \alpha } \right)\\\ \Rightarrow 2\theta = \left( {\dfrac{\pi }{2} - \alpha } \right)\end{array}
Hence, we see that 2θ=(π2α)2\theta = \left( {\dfrac{\pi }{2} - \alpha } \right). We will divide both sides of this equation with 2 to find the value of θ\theta . On doing so we get,
2θ2=12(π2α) θ=(π4α2)\begin{array}{l}\dfrac{{2\theta }}{2} = \dfrac{1}{2}\left( {\dfrac{\pi }{2} - \alpha } \right)\\\ \Rightarrow \theta = \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\end{array}
We will now find the value of 2cos2θ2{\cos ^2}\theta . To do so we will substitute θ=(π4α2)\theta = \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) in the expression.
2cos2θ=2cos2(π4α2)2{\cos ^2}\theta = 2{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right).
Finally, we will substitute 2cos2(π4α2)2{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)with 1+cos(π2α)1 + \cos \left( {\dfrac{\pi }{2} - \alpha } \right) in equation (1). Hence, we get,
\left\\{ {\dfrac{{1 + \cos \left( {\dfrac{\pi }{2} - \alpha } \right) + i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}{{1 + \cos \left( {\dfrac{\pi }{2} - \alpha } \right) - i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}} \right\\} = \left\\{ {\dfrac{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}} \right\\}……………(2)\left( 2 \right)
We will now use the identity sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta to substitute sin(π2α)\sin \left( {\dfrac{\pi }{2} - \alpha } \right) in the above expression. Let us compare sin2θ\sin 2\theta with sin(π2α)\sin \left( {\dfrac{\pi }{2} - \alpha } \right).
sin2θ=sin(π2α) 2θ=(π2α)\begin{array}{l}\sin 2\theta = \sin \left( {\dfrac{\pi }{2} - \alpha } \right)\\\ \Rightarrow 2\theta = \left( {\dfrac{\pi }{2} - \alpha } \right)\end{array}
Hence, we see that 2θ=(π2α)2\theta = \left( {\dfrac{\pi }{2} - \alpha } \right). We will divide both sides of this equation with 2 to find the value of θ\theta . On doing so we get,
2θ2=12(π2α) θ=(π4α2)\begin{array}{l}\dfrac{{2\theta }}{2} = \dfrac{1}{2}\left( {\dfrac{\pi }{2} - \alpha } \right)\\\ \Rightarrow \theta = \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\end{array}
We will now find the value of 2sinθcosθ2\sin \theta \cos \theta . To do so we will substitute θ=(π4α2)\theta = \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) in the expression.
2sinθcosθ=2sin(π4α2)cos(π4α2)2\sin \theta \cos \theta = 2\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right).
Finally, we will substitute 2sin(π4α2)cos(π4α2)2\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)with sin(π2α)\sin \left( {\dfrac{\pi }{2} - \alpha } \right) in equation (2). Hence, we get,
\left\\{ {\dfrac{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}} \right\\} = \left\\{ {\dfrac{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i2\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i2\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}} \right\\}
We will now take the common terms out from the numerator and denominator of the above expression. On doing so we get,
\left\\{ {\dfrac{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i2\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i2\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}} \right\\} = \dfrac{{2\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\left\\{ {2\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}}{{2\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\left\\{ {2\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}}
On canceling out the common terms we obtain the expression as,
\dfrac{{2\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\left\\{ {\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}}{{2\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\left\\{ {\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}} = \dfrac{{\left\\{ {\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}}{{\left\\{ {\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}}
We know that θ=(π4α2)\theta = \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)
Now we also know that eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta and eiθ=cosθisinθ{e^{ - i\theta }} = \cos \theta - i\sin \theta . Thus, expressing the above equation, in the exponential form we will get,
\dfrac{{\left\\{ {\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}}{{\left\\{ {\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}} = \dfrac{{{e^{i\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}}}{{{e^{ - i\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}}}
On evaluating the powers of the above exponent, we get,
ei(π4α2)ei(π4α2)=ei(π4α2)+i(π4α2)\dfrac{{{e^{i\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}}}{{{e^{ - i\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}}} = {e^{i\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}
On adding the powers, we get
ei(π4α2)+i(π4α2)=e2i(π4α2){e^{i\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}} = {e^{2i\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}
On multiplying the terms and simplifying the powers we get,
e2i(π4α2)=ei(π2α){e^{2i\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}} = {e^{i\left( {\dfrac{\pi }{2} - \alpha } \right)}}
On multiplying the power with nn, we get
en×i(π2α)=ei(nπ2nα){e^{n \times i\left( {\dfrac{\pi }{2} - \alpha } \right)}} = {e^{i\left( {\dfrac{{n\pi }}{2} - n\alpha } \right)}}
Finally, we will express our exponential into the complex equation form using the formula eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta . On doing so we will get,
ei(nπ2nα)=cos(nπ2nα)+isin(nπ2nα){e^{i\left( {\dfrac{{n\pi }}{2} - n\alpha } \right)}} = \cos \left( {\dfrac{{n\pi }}{2} - n\alpha } \right) + i\sin \left( {\dfrac{{n\pi }}{2} - n\alpha } \right)

Hence, the correct answer is option (C).

Note:
A+iBA + iB is in the form of a complex number.
Here, AA and BB are the real numbers. They are known as the real part.
ii denotes an imaginary number which is known as the imaginary part. The imaginary part satisfies the equation i2=1{i^2} = - 1. No real number is able to satisfy this equation.