Question
Question: Express in the form \[A + iB\] \[\left( {\dfrac{{1 + \sin \alpha + i\cos \alpha }}{{1 + \sin \alph...
Express in the form A+iB
(1+sinα−icosα1+sinα+icosα)
A) cos(2nπ−nα)−isin(2nπ−nα)
B) cos(nπ−nα)−isin(nπ−nα)
C) cos(2nπ−nα)+isin(2nπ−nα)
Solution
We are required to express the given expression in the A+iB form. To solve this question, we will first manipulate our expression using the various trigonometric identities and formulas to simplify it to the simplest form. We will then express it as an exponential and then simplify further to obtain the answer.
Formula Used: We will use the following formulas to solve our question,
- sinθ=cos(90−θ) =cos(2π−θ)
- cosθ=sin(90−θ) =sin(2π−θ)
- 1+cos2θ=2cos2θ
- sin2θ=2sinθcosθ
- eiθ=cosθ+isinθ
- e−iθ=cosθ−isinθ
Complete step by step solution:
Let us substitute sinαand cosα in the given expression using the identities sinθ=cos(2π−θ) and cosθ=sin(2π−θ) respectively.
Consider sinθ=cos(2π−θ). Substitute θ with αin this equation. On doing so we get,
sinα=cos(2π−α)
Consider cosθ=sin(2π−θ). Substitute θ with αin this equation. On doing so we get,
cosα=sin(2π−α)
So, now based on the above modifications, we will substitute the values in our expression. On doing so we get,
\left( {\dfrac{{1 + \sin \alpha + i\cos \alpha }}{{1 + \sin \alpha - i\cos \alpha }}} \right) = \left\\{ {\dfrac{{1 + \cos \left( {\dfrac{\pi }{2} - \alpha } \right) + i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}{{1 + \cos \left( {\dfrac{\pi }{2} - \alpha } \right) - i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}} \right\\}……………….(1)
We will now use the identity 1+cos2θ=2cos2θ to substitute 1+cos(2π−α) in the above expression.
Let us compare 1+cos2θ with 1+cos(2π−α).
1+cos2θ=1+cos(2π−α) ⇒cos2θ=cos(2π−α) ⇒2θ=(2π−α)
Hence, we see that 2θ=(2π−α). We will divide both sides of this equation with 2 to find the value of θ. On doing so we get,
22θ=21(2π−α) ⇒θ=(4π−2α)
We will now find the value of 2cos2θ. To do so we will substitute θ=(4π−2α) in the expression.
2cos2θ=2cos2(4π−2α).
Finally, we will substitute 2cos2(4π−2α)with 1+cos(2π−α) in equation (1). Hence, we get,
\left\\{ {\dfrac{{1 + \cos \left( {\dfrac{\pi }{2} - \alpha } \right) + i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}{{1 + \cos \left( {\dfrac{\pi }{2} - \alpha } \right) - i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}} \right\\} = \left\\{ {\dfrac{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}} \right\\}……………(2)
We will now use the identity sin2θ=2sinθcosθ to substitute sin(2π−α) in the above expression. Let us compare sin2θ with sin(2π−α).
sin2θ=sin(2π−α) ⇒2θ=(2π−α)
Hence, we see that 2θ=(2π−α). We will divide both sides of this equation with 2 to find the value of θ. On doing so we get,
22θ=21(2π−α) ⇒θ=(4π−2α)
We will now find the value of 2sinθcosθ. To do so we will substitute θ=(4π−2α) in the expression.
2sinθcosθ=2sin(4π−2α)cos(4π−2α).
Finally, we will substitute 2sin(4π−2α)cos(4π−2α)with sin(2π−α) in equation (2). Hence, we get,
\left\\{ {\dfrac{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i\sin \left( {\dfrac{\pi }{2} - \alpha } \right)}}} \right\\} = \left\\{ {\dfrac{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i2\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i2\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}} \right\\}
We will now take the common terms out from the numerator and denominator of the above expression. On doing so we get,
\left\\{ {\dfrac{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i2\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i2\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}} \right\\} = \dfrac{{2\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\left\\{ {2\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}}{{2\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\left\\{ {2\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}}
On canceling out the common terms we obtain the expression as,
\dfrac{{2\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\left\\{ {\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}}{{2\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)\left\\{ {\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}} = \dfrac{{\left\\{ {\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}}{{\left\\{ {\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}}
We know that θ=(4π−2α)
Now we also know that eiθ=cosθ+isinθ and e−iθ=cosθ−isinθ. Thus, expressing the above equation, in the exponential form we will get,
\dfrac{{\left\\{ {\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) + i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}}{{\left\\{ {\cos \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right) - i\sin \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)} \right\\}}} = \dfrac{{{e^{i\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}}}{{{e^{ - i\left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)}}}}
On evaluating the powers of the above exponent, we get,
e−i(4π−2α)ei(4π−2α)=ei(4π−2α)+i(4π−2α)
On adding the powers, we get
ei(4π−2α)+i(4π−2α)=e2i(4π−2α)
On multiplying the terms and simplifying the powers we get,
e2i(4π−2α)=ei(2π−α)
On multiplying the power with n, we get
en×i(2π−α)=ei(2nπ−nα)
Finally, we will express our exponential into the complex equation form using the formula eiθ=cosθ+isinθ. On doing so we will get,
ei(2nπ−nα)=cos(2nπ−nα)+isin(2nπ−nα)
Hence, the correct answer is option (C).
Note:
A+iB is in the form of a complex number.
Here, A and B are the real numbers. They are known as the real part.
i denotes an imaginary number which is known as the imaginary part. The imaginary part satisfies the equation i2=−1. No real number is able to satisfy this equation.