Solveeit Logo

Question

Question: Express \[\cos \theta \] in terms of \[\cot \theta \]....

Express cosθ\cos \theta in terms of cotθ\cot \theta .

Explanation

Solution

Here, we have to find the trigonometric ratio in terms of the other. The cosine of an angle is the ratio of the adjacent side to the hypotenuse, where theta is one of the acute angles. If the length of the adjacent gets divided by the length of the opposite side, it becomes the cotangent of an angle in a right triangle.

Formula Used:
We will use the following formulas:
Trigonometric Identity: 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta
Trigonometric Ratio: tanθ=1cotθ\tan \theta = \dfrac{1}{{\cot \theta }}; cosθ=1secθ\cos \theta = \dfrac{1}{{\sec \theta }};
Law of Surds: ab=ab\sqrt {\dfrac{a}{b}} = \dfrac{{\sqrt a }}{{\sqrt b }}; a2=a\sqrt {{a^2}} = a

Complete step-by-step answer:
We will use the trigonometric Identity: 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta
Taking square root on both the sides of above identity, we get
secθ=1+tan2θ\Rightarrow \sec \theta = \sqrt {1 + {{\tan }^2}\theta }
Now, by using the trigonometric ratio tanθ=1cotθ\tan \theta = \dfrac{1}{{\cot \theta }} and substituting it in the above equation, we get
secθ=1+1cot2θ\Rightarrow \sec \theta = \sqrt {1 + \dfrac{1}{{{{\cot }^2}\theta }}}
By taking LCM on the right hand side of the above equation, we get
secθ=1×cot2θcot2θ+1cot2θ\Rightarrow \sec \theta = \sqrt {1 \times \dfrac{{{{\cot }^2}\theta }}{{{{\cot }^2}\theta }} + \dfrac{1}{{{{\cot }^2}\theta }}}
Adding the like terms, we get
secθ=cot2θ+1cot2θ\Rightarrow \sec \theta = \sqrt {\dfrac{{{{\cot }^2}\theta + 1}}{{{{\cot }^2}\theta }}}
Now, by using the law of Surds ab=ab\sqrt {\dfrac{a}{b}} = \dfrac{{\sqrt a }}{{\sqrt b }}, we can write
secθ=cot2θ+1cot2θ\Rightarrow \sec \theta = \dfrac{{\sqrt {{{\cot }^2}\theta + 1} }}{{\sqrt {{{\cot }^2}\theta } }}
Now using the relation cosec2θ=1+cot2θ\cos e{c^2}\theta = 1 + {\cot ^2}\theta , we get
secθ=cosec2θcot2θ\Rightarrow \sec \theta = \dfrac{{\sqrt {\cos e{c^2}\theta } }}{{\sqrt {{{\cot }^2}\theta } }}
Now, by using the law of Surds a2=a\sqrt {{a^2}} = a , we get
secθ=cosecθcotθ\Rightarrow \sec \theta = \dfrac{{\cos ec\theta }}{{\cot \theta }}
Again, by using the trigonometric ratio cosθ=1secθ\cos \theta = \dfrac{1}{{\sec \theta }}, we get
1cosθ=cosecθcotθ\Rightarrow \dfrac{1}{{\cos \theta }} = \dfrac{{\cos ec\theta }}{{\cot \theta }}
cosθ=1cosecθcotθ\Rightarrow \cos \theta = \dfrac{1}{{\dfrac{{\cos ec\theta }}{{\cot \theta }}}}
Rewriting the equation, we get
cosθ=cotθcosecθ\Rightarrow \cos \theta = \dfrac{{\cot \theta }}{{\cos ec\theta }}
Using the reciprocal relation sinθ=1cosecθ\sin \theta = \dfrac{1}{{\cos ec\theta }}, we get
cosθ=cotθsinθ\Rightarrow \cos \theta = \cot \theta \cdot \sin \theta
Therefore, cosθ\cos \theta can be expressed in terms of cotθ\cot \theta as cosθ=cotθsinθ\cos \theta = \cot \theta \cdot \sin \theta .

Note: We know that the trigonometric ratios of a triangle are also known as trigonometric functions. These are real functions that relate an angle of a right-angled triangle to ratios of a Right-angled triangle. It is possible to convert every trigonometric ratio in terms of the other trigonometric ratio using fundamental identities.
We can also solve by other method such that
cosθ=cosθ×sinθsinθ\cos \theta = \cos \theta \times \dfrac{{\sin \theta }}{{\sin \theta }}
By rewriting the equation, we get
cosθ=cosθsinθsinθ\Rightarrow \cos \theta = \dfrac{{\cos \theta }}{{\sin \theta }} \cdot \sin \theta
We know that cosθsinθ=cotθ\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta
cosθ=cotθsinθ\Rightarrow \cos \theta = \cot \theta \cdot \sin \theta