Solveeit Logo

Question

Question: Express \[2\hat i - \hat j + 3\hat k\] as the sum of a vector parallel and a vector perpendicular to...

Express 2i^j^+3k^2\hat i - \hat j + 3\hat k as the sum of a vector parallel and a vector perpendicular to 2i^+4j^2k^2\hat i + 4\hat j - 2\hat k.

Explanation

Solution

Let us consider two vectors A,B\overrightarrow A ,\overrightarrow B as two parallel vectors. Then they are scalar multiple of one another.
That is, A=kB\overrightarrow A = k\overrightarrow B orB=cA\overrightarrow B = c\overrightarrow A , where k and c are scalar constant.
Let us consider two vectorsA,B\overrightarrow A ,\overrightarrow B . They are called perpendicular vector if and only if A.B=0\overrightarrow A .\overrightarrow B = 0

Complete step by step solution:
Let us consider, A=2i^j^+3k^\overrightarrow A = 2\hat i - \hat j + 3\hat k and B=2i^+4j^2k^\overrightarrow B = 2\hat i + 4\hat j - 2\hat k
According to the problem we have to represent A=2i^j^+3k^\overrightarrow A = 2\hat i - \hat j + 3\hat k as the sum of two vectors which are vector parallel and a vector perpendicular toB=2i^+4j^2k^\overrightarrow B = 2\hat i + 4\hat j - 2\hat k.
Let us consider, A=C+D\overrightarrow A = \overrightarrow C + \overrightarrow D where, C\overrightarrow C is perpendicular to B\overrightarrow B and D\overrightarrow D is parallel toB\overrightarrow B .
So, from the given hint we have, C.B=0\overrightarrow {C.} \overrightarrow B = 0 and D=αB\overrightarrow D = \alpha \overrightarrow B for some constantα\alpha .
That is A\overrightarrow A can be written as A=C+αB\overrightarrow A = \overrightarrow C + \alpha \overrightarrow B … (1)
Let us multiply B\overrightarrow B on both sides of the equation we get,
B.A=B.C+αB.B\overrightarrow B \overrightarrow {.A} = \overrightarrow B .\overrightarrow C + \alpha \overrightarrow B .\overrightarrow B … (2)
Here B.A=(2i^j^+3k^).(2i^+4j^2k^)=446\overrightarrow B \overrightarrow {.A} = (2\hat i - \hat j + 3\hat k).(2\hat i + 4\hat j - 2\hat k) = 4 - 4 - 6
B.B=(2i^+4j^2k^).(2i^+4j^2k^)=4+16+4\overrightarrow B .\overrightarrow B = (2\hat i + 4\hat j - 2\hat k).(2\hat i + 4\hat j - 2\hat k) = 4 + 16 + 4
Also C.B=0\overrightarrow {C.} \overrightarrow B = 0
Substitute the values we have found in equation (2) we get,
446=0+α(16+4+4)4 - 4 - 6 = 0 + \alpha (16 + 4 + 4)
Let us solve the above equation to find α\alpha we get,
α=624=14\alpha = \dfrac{{ - 6}}{{24}} = \dfrac{{ - 1}}{4}
Let us consider, C=xi^+yj^+zk^\overrightarrow C = x\hat i + y\hat j + z\hat k
Now substitute the values of α=14\alpha = \dfrac{{ - 1}}{4} in (1) we get,
2i^j^+3k^=14(2i^+4j^2k^)+(xi^+yj^+zk^)2\hat i - \hat j + 3\hat k = \dfrac{{ - 1}}{4}(2\hat i + 4\hat j - 2\hat k) + (x\hat i + y\hat j + z\hat k)
Let us take the common terms on right hand side,
2i^j^+3k^=(x12)i^+(y1)j^+(z+12)k^2\hat i - \hat j + 3\hat k = (x - \dfrac{1}{2})\hat i + (y - 1)\hat j + (z + \dfrac{1}{2})\hat k
Let us equate the coefficient of the same components of the vectors in the above equation we have,
2=12+x2 = - \dfrac{1}{2} + x; 1=1+y - 1 = - 1 + y; 3=12+z3 = \dfrac{1}{2} + z
Let us solve the three equations we have,
x=52;y=0;z=52x = \dfrac{5}{2};y = 0;z = \dfrac{5}{2}
So, C=52i^+52k^\overrightarrow C = \dfrac{5}{2}\hat i + \dfrac{5}{2}\hat k

\thereforeThe sum of required two vectors is 2i^j^+3k^=14(2i^+4j^2k^)+(52i^+52k^)2\hat i - \hat j + 3\hat k = \dfrac{{ - 1}}{4}(2\hat i + 4\hat j - 2\hat k) + (\dfrac{5}{2}\hat i + \dfrac{5}{2}\hat k)

Note:
Let us consider two vectors A,B\overrightarrow A ,\overrightarrow B . Then the dot product of them is A.B=A.B.cosθ\overrightarrow A .\overrightarrow B = \left| A \right|.\left| B \right|.\cos \theta . Here θ\theta is the angle between them. In vector i^,j^,k^\hat i,\hat j,\hat k are the unit vectors of the axes X, Y, Z respectively.
Also, we must be careful that in dot product the resultant is scalar whereas in cross-product the resultant is a vector. Here in dot product, we must multiply the coefficients of each vector but in cross-product, we form a determinant and solve it.