Solveeit Logo

Question

Question: Explain binomial series ....

Explain binomial series .

Explanation

Solution

Hint : We have to state what binomial series is . We also have to give the expression for the expansion of sum or difference of two terms using the binomial theorem . I also use the concept of permutation and combination for expanding the binomial theorem . We also state the concept of Pascal’s Triangle .

Complete step-by-step answer :
Definition of binomial series :
Binomial series is the method of expanding the terms of sum or difference of two variables of an expansion which are raised to any finite power ( n ),\left( {{\text{ }}n{\text{ }}} \right), where n belongs to natural number . The expansion is used in various sections such as trigonometric formulas , algebra , probability etc .
The expansion of sum of two variables is given by the formula :
(x+y)n=nC0xn+nC1x(n1)×y+nC2x(n2)×y2+...............+nCnyn{(x + y)^n} = n{C_0}{x^n} + n{C_1}{x^{(n - 1)}} \times y + n{C_2}{x^{(n - 2)}} \times {y^2} + ............... + n{C_n}{y^n}
The expansion of difference of two variables is given by the formula :
(xy)n=nC0xn+(1)×nC1x(n1)×y+nC2x(n2)×y2+.............+(1)n×nCnyn{(x - y)^n} = n{C_0}{x^n} + ( - 1) \times n{C_1}{x^{(n - 1)}} \times y + n{C_2}{x^{(n - 2)}} \times {y^2} + ............. + {( - 1)^n} \times n{C_n}{y^n}
The expansion for various value of n :
(A+B)0=1{(A + B)^0} = 1
(A+B)1=A+B{(A + B)^1} = A + B
(A+B)2=A2+2AB+B2{(A + B)^2} = {A^2} + 2AB + {B^2}
(A+B)3=A3+3×A2×B+3×A×B2+B3{(A + B)^3} = {A^3} + 3 \times {A^2} \times B + 3 \times A \times {B^2} + {B^3}
(A+B)4=4C0A4+4C1A3×B+4C2A2×B2+4C3A×B3+4C4B4{(A + B)^4} = 4{C_0}{A^4} + 4{C_1}{A^3} \times B + 4{C_2}{A^2} \times {B^2} + 4{C_3}A \times {B^3} + 4{C_4}{B^4}
( using the values of combinations )
(A+B)4=A4+4×A3×B+6A2×B2+4A×B3+B4{(A + B)^4} = {A^4} + 4 \times {A^3} \times B + 6{A^2} \times {B^2} + 4A \times {B^3} + {B^4}
From the above expression we can conclude that the total number of terms in the expression are 11 more than the power of the expression .
The sum of powers of variables of the expansion should be equal to the power of the original term .
Some other expressions for the expansion :
(x+y)n+(x+y)n=2×[nC0xn+nC2x(n1)y2+nC4x(n4)y4+.............]{(x + y)^n} + {(x + y)^n} = 2 \times [n{C_0}{x^n} + n{C_2}{x^{(n - 1)}}{y^2} + n{C_4}{x^{(n - 4)}}{y^4} + .............] ———(1)
(x+y)n(xy)n=2×[nC1x(n1)y+nC3x(n3)y3+nC5x(n5)y5+.............]{(x + y)^n} - {(x - y)^n} = 2 \times [n{C_1}{x^{(n - 1)}}y + n{C_3}{x^{(n - 3)}}{y^3} + n{C_5}{x^{(n - 5)}}{y^5} + .............] ———(2)
(1+x)n=[nC0+nC1x+nC2x2+ .......+nCnxn]{(1 + x)^n} = [n{C_0} + n{C_1}x + n{C_2}{x^2} + {\text{ }}....... + n{C_n}{x^n}]
(1+x)n+(1x)n=2×[nC0+nC2x2+nC4x4+..........]{(1 + x)^n} + {(1 - x)^n} = 2 \times [n{C_0} + n{C_2}{x^2} + n{C_4}{x^4} + ..........]
(1+x)n(1x)n=2×[nC1x+nC3x3+nC5x5+.................]{(1 + x)^n} - {(1 - x)^n} = 2 \times [n{C_1}x + n{C_3}{x^3} + n{C_5}{x^5} + .................]
The number of terms in the expansion  (1)\;\left( 1 \right)are ( n + 2 ) 2\dfrac{{\left( {{\text{ }}n{\text{ }} + {\text{ }}2{\text{ }}} \right){\text{ }}}}{2}if is even or( n + 1 ) 2\dfrac{{\left( {{\text{ }}n{\text{ }} + {\text{ 1 }}} \right){\text{ }}}}{2} if is odd .
The number of terms in the expansion (2)\left( 2 \right)are n2\dfrac{n}{2}if is even or( n + 1 ) 2\dfrac{{\left( {{\text{ }}n{\text{ }} + {\text{ 1 }}} \right){\text{ }}}}{2} if is odd .

Note : Corresponding to each combination of nCr{}^n{C_r}we have r!r!permutations, because rr objects in every combination can be rearranged in r!r!ways . Hence , the total number of permutations of nn different things taken rr at a time isnCr × r!{}^n{C_r}{\text{ }} \times {\text{ }}r!. Thus nPr = nCr × r! , 0< r n  {}^n{P_r}{\text{ }} = {\text{ }}{}^n{C_r}{\text{ }} \times {\text{ }}r!{\text{ }},{\text{ }}0 < {\text{ }}r{\text{ }} \leqslant n\;
Also , some formulas used :
nC1 = n{}^n{C_1}{\text{ }} = {\text{ }}n
nC2= n(n1)2{}^n{C_2} = \dfrac{{{\text{ }}n\left( {n - 1} \right)}}{2}
nC0 = 1{}^n{C_0}{\text{ }} = {\text{ }}1
nCn= 1{}^n{C_n} = {\text{ }}1