Solveeit Logo

Question

Question: Expansion of Ring due to Charge: A ring of radius 0.1 m is made out of a thin metallic wire of area ...

Expansion of Ring due to Charge: A ring of radius 0.1 m is made out of a thin metallic wire of area of cross section 106m210^{-6} m^2. The ring has a uniform charge of π\pi coulomb. Find the change in radius of ring when a charge of 10810^{-8} C is placed at the centre of ring. Given that Young's modulus of the metal is 2×1011N/m22 \times 10^{11} N/m^2.

Answer

ΔR=2.25×103\Delta R = 2.25 \times 10^{-3} m (Expansion in radius)

Explanation

Solution

Solution:

  1. Electric Field by the Central Charge:
    The electric field at the ring (radius R=0.1R=0.1 m) due to the central charge Qc=108Q_c=10^{-8} C is

    E=kQcR2=9×109×108(0.1)2=900.01=9000 N/C.E = \frac{k Q_c}{R^2} = \frac{9\times10^9 \times 10^{-8}}{(0.1)^2} = \frac{90}{0.01} = 9000\ \text{N/C}.
  2. Force per Unit Length on the Ring:
    The ring carries a uniform total charge Qring=πQ_{\text{ring}} = \pi C. Therefore, the linear charge density is

    λ=Qring2πR=π2π×0.1=10.2=5 C/m.\lambda = \frac{Q_{\text{ring}}}{2\pi R} = \frac{\pi}{2\pi \times 0.1} = \frac{1}{0.2} = 5\ \text{C/m}.

    Thus, the force per unit length on the ring is

    f=λE=5×9000=45000 N/m.f = \lambda E = 5 \times 9000 = 45000\ \text{N/m}.
  3. Tension in the Ring:
    Consider a small segment subtending angle dθd\theta. Tension TT in the ring provides an inward force:

    Inward forceTdθ.\text{Inward force} \approx T\,d\theta.

    This must balance the outward force on the segment (with arc length RdθR\,d\theta):

    Tdθ=fRdθT=fR=45000×0.1=4500 N.T\,d\theta = f\,R\,d\theta \quad\Longrightarrow\quad T = fR = 45000 \times 0.1 = 4500\ \text{N}.
  4. Expansion of the Ring:
    The total length of the ring is L=2πRL = 2\pi R. Under tension, the extension is given by

    ΔL=TLAY,\Delta L = \frac{T L}{AY},

    where A=106 m2A = 10^{-6}\ \text{m}^2 is the cross-sectional area and Y=2×1011 N/m2Y = 2\times10^{11}\ \text{N/m}^2 is Young’s modulus. The corresponding change in radius is:

    ΔR=ΔL2π=TRAY.\Delta R = \frac{\Delta L}{2\pi} = \frac{T R}{AY}.

    Substituting the values:

    ΔR=4500×0.1106×2×1011=4502×105=450200000=0.00225 m.\Delta R = \frac{4500 \times 0.1}{10^{-6} \times 2\times10^{11}} = \frac{450}{2\times10^{5}} = \frac{450}{200000} = 0.00225\ \text{m}.

Explanation (Minimal):

  • Compute E=kQcR2E = \frac{kQ_c}{R^2}.
  • Find linear charge density λ=π2π(0.1)=5 C/m\lambda = \frac{\pi}{2\pi(0.1)} = 5\ \text{C/m}.
  • Force per unit length f=λE=45000 N/mf = \lambda E = 45000\ \text{N/m}.
  • Tension T=fR=4500 NT = fR = 4500\ \text{N}.
  • Extension: ΔR=TRAY=0.00225\Delta R = \frac{T R}{AY} = 0.00225 m.