Solveeit Logo

Question

Mathematics Question on Binomial theorem

Expand using Binomial Theorem (1+X22X)4,X0( 1+ \frac{X}{2} - \frac{2}{X})^4, X≠0

Answer

Using Binomial Theorem, the given expression (1+x22x)4( 1 +\frac{ x}{2} - \frac{2}{x})^4 can be expanded as
[(1+x2)2x]4[ ( 1 +\frac{ x}{2} )- \frac{2}{x} ]^4

=  4C0(1+x2)4  4C1(1+x2)3(2x)+  4C2(1+x2)2(2x)2  4C3(1+x2)(2x)3+  4C4(2x)4=\space^ 4C_0(1 + \frac{x}{2})^4 - \space^4C_1(1 +\frac{ x}{2})^3(\frac{2}{x}) + \space^4C_2(1 +\frac{ x}{2})^2(\frac{2}{x})^2 - \space^4C_3(1 +\frac{ x}{2}) (\frac{2}{x})^3 + \space^4C_4(\frac{2}{x})^4

=(1+x2)44(1+x2)3(2x)+6(1+x+x24)(4x2)4(1+x2)(8x3)+16x4= (1 +\frac{ x}{2})^4 -4(1+\frac{x}{2})^3(\frac{2}{x}) + 6(1+x+ \frac{x^2}{4}) (\frac{4}{x^2})- 4(1 + \frac{x}{2})(\frac{8}{x^3})+\frac{16}{x^4}

=(1+x2)4\-8x((1+x2)3+24x2+24x+632x316x2+16x4= (1 + \frac{x}{2})^4 \- \frac{8}{x}((1 +\frac{ x}{2})^3 + \frac{24}{x^2 }+\frac{ 24}{x }+6 - \frac{32}{x^3} -\frac{16}{x^2} +\frac{ 16}{x^4}

=(1+x2)4\-8x((1+x2)3+8x2+24x+6+32x3+16x4......(1)= (1 + \frac{x}{2})^4 \- \frac{8}{x}((1 +\frac{ x}{2})^3 + \frac{8}{x^2} +\frac{24}{x }+6 + \frac{32}{x^3} +\frac{16}{x^4} ......(1)

Again by using Binomial Theorem, we obtain

(1+x2)4=  3C0(1)4+  4C1(1)3(x2)+  4C2(1)2(x2)2\+  4C3(1)(x2)3\+  4C4(x2)4(1 +\frac{ x}{2})^4 = \space^3C_0 (1)^4+\space^ 4C_1(1)^3(\frac{x}{2})+ \space ^4C_2(1)^2(\frac{x}{2})^2 \+ \space^4C_3(1)(\frac{x}{2})^3 \+ \space^4C_4(\frac{x}{2})^4 =1+4×x2+6×x24+4×x38+x416...(2)=1+4 \times\frac{x}{2}+6\times \frac{x^2}{4} + 4 \times \frac{x^3}{8} +\frac{x^4}{16} ...(2)

(1+x2)3=  3C0(1+x2)3  3C1(1)2(x2)+  3C2(1)(x2)2  3C3(x2)3(1 + \frac{x}{2})^3= \space^3C_0(1 +\frac{ x}{2})^3 - \space^3C_1(1 )^2 (\frac{x}{2})+\space^ 3C_2(1) (\frac{x}{2})^2 - \space^3C_3( \frac{x}{2})^3 =1+3x2+3x24+x38....(3)=1 + \frac{3x}{2} + \frac{3x^2}{4} + \frac{x^3}{8} ....(3)

from (1), (2) and (3), we obtain
[(1+x2)2x]4[(1 + \frac{x}{2}) - \frac{2}{x}]^4

=1+2x+3x22+x32+x4168x(1+3x2+3x24+x38)+8x2+24x+632x3+16x4= 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} +\frac{ x^4}{16} -\frac{ 8}{x }(1 + \frac{3x}{2} +\frac{ 3x^2}{4} +\frac{ x^3}{8}) + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4}

=1+2x+32x2+x32+x4168x126xx2+8x2+24x+632x3+16x4= 1 + 2x + \frac{3}{2}x^2 + \frac{x^3}{2} + \frac{x^4}{16} - \frac{8}{x} -12 - 6x - x^2 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4}

=16x+8x232x3+16x44x=x22+x32+x4165= \frac{16}{x} + \frac{8}{x^2} - \frac{32}{x^3} + \frac{16}{x^4} - 4x = \frac{x^2}{2} +\frac{ x^3}{2} +\frac{ x^4}{16} -5