Solveeit Logo

Question

Question: Expand to 4 terms the following expressions: \({{\left( 1+\dfrac{1}{2}a \right)}^{-4}}\)...

Expand to 4 terms the following expressions: (1+12a)4{{\left( 1+\dfrac{1}{2}a \right)}^{-4}}

Explanation

Solution

Binomial expansion (or Binomial Theorem) which states that (x+y)n=r=0nnCrxnryr{{\left( x+y \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{n-r}}{{y}^{r}}}. Here use the binomial expansion for negative exponents i.e., (1+x)n=1nx+n(n+1)2!x2+n(n+1)(n+2)3!x3+.....(1+x)^{-n} = 1 - nx + \dfrac{n(n+1)}{2!}x^2 + \dfrac{n(n+1)(n+2)}{3!}x^3 + . . . . .

Complete step by step solution:

We have the expression (1+12a)4{{\left( 1+\dfrac{1}{2}a \right)}^{-4}}. We have to write its expansion upto 44 terms. We will use the formula for binomial expansion of terms which is (1+x)n=1nx+n(n+1)2!x2+n(n+1)(n+2)3!x3+.....(1+x)^{-n} = 1 - nx + \dfrac{n(n+1)}{2!}x^2 + \dfrac{n(n+1)(n+2)}{3!}x^3 + . . . . .

On substituting the values that is n=4n=-4 and x=12ax=\dfrac{1}{2}a

(1+12a)4=1(4)(12a)+(4)(4+1)2!(12a)2+4(4+1)(4+2)3!(12a)3{{\left( 1+\dfrac{1}{2}a \right)}^{-4}} = 1 - (-4)\left(\dfrac{1}{2}a\right) + \dfrac{(-4)(-4+1)}{2!}\left(\dfrac{1}{2}a\right)^2 + \dfrac{-4(-4+1)(-4+2)}{3!}\left(\dfrac{1}{2}a\right)^3

On simplifying the above equation, we get

(1+12a)4=1+(2a)+(2)(3)(14a2)+4(3)(2)3×2(18a3){{\left( 1+\dfrac{1}{2}a \right)}^{-4}} = 1 + (2a) + {(-2)(-3)}\left(\dfrac{1}{4}a^2\right) + \dfrac{-4(-3)(-2)}{3\times 2}\left(\dfrac{1}{8}a^3\right)

(1+12a)4=1+(2a)+(32a2)(12a3){{\left( 1+\dfrac{1}{2}a \right)}^{-4}} = 1 + (2a) + \left(\dfrac{3}{2}a^2\right) - \left(\dfrac{1}{2}a^3\right)

Hence we get the expansion of (1+12a)4\left(1+\dfrac{1}{2}a\right)^{4} upto 4 terms as 1+2a+32a212a31+2a+\dfrac{3}{2}a^2-\dfrac{1}{2}a^3

Note: Binomial expansion (also known as Binomial Theorem) describes the algebraic expansion of powers of a binomial. We expand the polynomial (x+y)n{{\left( x+y \right)}^{n}} into a sum involving terms of the form axbyca{{x}^{b}}{{y}^{c}}, where bb and cc are non-negative integers with b+c=nb+c=n and the coefficient aa of each term is a specific positive integer. The coefficient aa in the term axbyca{{x}^{b}}{{y}^{c}} is known as the binomial coefficient (n b )\left( \begin{aligned} & n \\\ & b \\\ \end{aligned} \right) or (n c )\left( \begin{aligned} & n \\\ & c \\\ \end{aligned} \right). These coefficients for varying nn and bb can be arranged to form a Pascal’s Triangle. While using the formula of binomial expansion, one must keep in mind that nn is a non-negative integer. That’s why to expand the expression (1+12a)4{{\left( 1+\dfrac{1}{2}a \right)}^{-4}}, we wrote it in terms of fraction to get positive value of nn.