Question
Mathematics Question on Binomial Theorem for Positive Integral Indices
Expand the expression (x+x1)6.
Answer
By using Binomial Theorem, the expression (x+x1)6 can be expanded as
(x+x1)6 = ^6C_0 (x)^6 + ^6C_1(x)^5(\frac{1}{x}) \+ ^6C_2(x)^4(\frac{1}{x}) \+ ^6C_3(x)^3(\frac{1}{x})^3 + ^6C_4(x)^2(\frac{1}{x})^4 +$$ ^6C_5(x)(\frac{1}{x})^5 + ^6C_6(\frac{1}{x})^6
=x6+6(x)5(x1)+15(x)4(x21)+20(x)3(x31)+15(x)2(x41)+6(x)(x51)+x61
=x6+6x4+15x2+20+x215+x46+x61