Solveeit Logo

Question

Mathematics Question on Binomial Theorem for Positive Integral Indices

Expand the expression (x3+1x)5(\frac{x}{3} + \frac{1}{x})^5.

Answer

By using Binomial Theorem, the expression (x3+1x)5(\frac{x}{3} + \frac{1}{x})^5 can be expanded as

(x3+1x)5(\frac{x}{3} + \frac{1}{x})^5 = 5C0(x3)5+5C1(x3)4(1x)+5C2(x3)3(1x)2+5C3(x3)2(1x)3+5C4(x3)(1x)4+5C5(1x)5^5C_0(\frac{x}{3})^5 + ^5C_1(\frac{x}{3})^4(\frac{1}{x}) + ^5C_2 (\frac{x}{3})^3(\frac{1}{x})^2 + ^5C_3(\frac{x}{3})^2(\frac{1}{x})^3 + ^5C_4(\frac{x}{3})(\frac{1}{x})^4+ ^5C_5(\frac{1}{x})^5

= x5243+5(x481)(1x)+10(x327)(1x2)+10(x29)(1x3)+5(x3)(1x4)+(1x5)\frac{x^5}{ 243} + 5(\frac{x^4}{81})(\frac{1}{x}) + 10 (\frac{x^3}{27})(\frac{1}{x^2}) + 10 (\frac{x^2}{9})(\frac{1}{x^3}) + 5 (\frac{x}{3})(\frac{1}{x^4}) +(\frac{1}{x^5})

= x5243+5x381+10x27+109x+53x3+1x5\frac{x^5}{ 243} + \frac{5x^3}{81} + \frac{10x}{ 27} + \frac{10}{9x} + \frac{5}{ 3x^3} + \frac{1}{x^5}.