Solveeit Logo

Question

Mathematics Question on Binomial Theorem for Positive Integral Indices

Expand the expression(2xx2)5 (\frac{2}{x} - \frac{x}{2})^5.

Answer

By using Binomial Theorem, the expression ((2xx2)5(\frac{2}{x} - \frac{x}{2})^5can be expanded as:

(2xx2)5(\frac{2}{x} - \frac{x}{2})^5 = 5C0(2x)55C1(2x)4(x2)+5C2(2x)3(x2)25C3(2x)2(x2)3+5C4(2x)(x2)4+5C5(x2)5^5 C_0(\frac{2}{x})^5 - ^5 C_1(\frac{2}{x})^4(\frac{x}{2})+ ^5 C_2(\frac{2}{x})^3(\frac{x}{2})^2 - ^5 C_3(\frac{2}{x})^2(\frac{x}{2})^3+ ^5 C_4(\frac{2}{x})(\frac{x}{2})^4 + ^5C_5(\frac{x}{2})^5

= 32x55(16x4)(x2)+10(8x3)(x24)10(4x2)(x38)+5(2x)(x416)x532\frac{32}{x^5} - 5(\frac{16}{x^4})(\frac{x}{2}) + 10(\frac{8}{x^3})(\frac{x^2}{4}) -10 (\frac{4}{x^2})(\frac{x^3}{8}) + 5(\frac{2}{x})(\frac{x^4}{16}) - \frac{x^5}{32}

= 32x540x3+20x5x+58x3x532\frac{32}{x^5} - \frac{40}{x^3} + \frac{20}{x} - 5x + \frac{5}{8 x^3} - \frac{x^5}{32}.