Question
Mathematics Question on Binomial Theorem for Positive Integral Indices
Expand the expression(x2−2x)5.
Answer
By using Binomial Theorem, the expression ((x2−2x)5can be expanded as:
(x2−2x)5 = 5C0(x2)5−5C1(x2)4(2x)+5C2(x2)3(2x)2−5C3(x2)2(2x)3+5C4(x2)(2x)4+5C5(2x)5
= x532−5(x416)(2x)+10(x38)(4x2)−10(x24)(8x3)+5(x2)(16x4)−32x5
= x532−x340+x20−5x+8x35−32x5.