Question
Mathematics Question on Binomial Theorem for Positive Integral Indices
Expand the expression (2x−3)6.
Answer
By using Binomial Theorem, the expression (2x−3)6 can be expanded as
(2x−3)6 = ^6C_0(2x)^6 - ^6C_1(2x)^5(3) + ^6C_2(2x)^4(3)^2 - ^6C_3(2x)^3(3)^3 + ^6C_4(2x)^2(3)^4 - $$^6C_5(2x)(3)^5 + ^6C_6(3)^6
= 64x6−6(32x5)(3)+15(16x4)(9)−20(8x3)(27)+15(4x2)(81)−6(2x)(243)+729
= 64x6−576x5+2160x4−4320x3+4860x2−2916x+729