Solveeit Logo

Question

Question: Expand \[\log \left( {1 + x} \right)\] in ascending powers of \[x\] up to the term containing \[{x^4...

Expand log(1+x)\log \left( {1 + x} \right) in ascending powers of xx up to the term containing x4{x^4}.

Explanation

Solution

We will take f(x)=log(1+x)f\left( x \right) = \log \left( {1 + x} \right). Then we will do successive differentiation of f(x)f\left( x \right) to find the values of f(x){f'}\left( x \right), f(x){f^{''}}\left( x \right), f(x){f^{'''}}\left( x \right) and f(x){f^{''''}}\left( x \right). Putting x equals to zero, we will then find the values of f(0){f'}\left( 0 \right), f(0){f^{''}}\left( 0 \right), f(0){f^{'''}}\left( 0 \right) andf(0){f^{''''}}\left( 0 \right). Putting all these values in Maclaurin’s theorem we will get the required expansion of log(1+x)\log \left( {1 + x} \right).

Complete step by step answer:
Let f(x)=log(1+x)f\left( x \right) = \log \left( {1 + x} \right)
Putting x=0x = 0, we get
f(0)=log(1+0)\Rightarrow f\left( 0 \right) = \log \left( {1 + 0} \right)
f(0)=log(1)\Rightarrow f\left( 0 \right) = \log \left( 1 \right)
As log(1)=0\log \left( 1 \right) = 0, we get
f(0)=0\Rightarrow f\left( 0 \right) = 0
Now, on differentiating f(x)f\left( x \right) we get
f(x)=dydx(log(1+x))\Rightarrow {f'}\left( x \right) = \dfrac{{dy}}{{dx}}\left( {\log \left( {1 + x} \right)} \right)
On simplifying right-hand side of above equation, we get
f(x)=11+x\Rightarrow {f'}\left( x \right) = \dfrac{1}{{1 + x}}
Putting x=0x = 0, we get
f(0)=11+0\Rightarrow {f'}\left( 0 \right) = \dfrac{1}{{1 + 0}}
On simplification, we get
f(0)=1\Rightarrow {f'}\left( 0 \right) = 1
Now, differentiating f(x){f'}\left( x \right), we get
f(x)=dydx(11+x)\Rightarrow {f^{''}}\left( x \right) = \dfrac{{dy}}{{dx}}\left( {\dfrac{1}{{1 + x}}} \right)
On simplifying right-hand side of above equation, we get
f(x)=1(1+x)2\Rightarrow {f^{''}}\left( x \right) = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}
Putting x=0x = 0, we get
f(0)=1(1+0)2\Rightarrow {f^{''}}\left( 0 \right) = - \dfrac{1}{{{{\left( {1 + 0} \right)}^2}}}
On simplification, we get
f(0)=1\Rightarrow {f^{''}}\left( 0 \right) = - 1
In the same way, differentiating f(x){f^{''}}\left( x \right), we get
f(x)=dydx(1(1+x)2)\Rightarrow {f^{'''}}\left( x \right) = \dfrac{{dy}}{{dx}}\left( { - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}} \right)
On simplifying right-hand side of above equation, we get
f(x)=2(1+x)3\Rightarrow {f^{'''}}\left( x \right) = \dfrac{2}{{{{\left( {1 + x} \right)}^3}}}
Putting x=0x = 0, we get
f(0)=2(1+0)3\Rightarrow {f^{'''}}\left( 0 \right) = \dfrac{2}{{{{\left( {1 + 0} \right)}^3}}}
On simplification, we get
f(0)=2\Rightarrow {f^{'''}}\left( 0 \right) = 2
Now, differentiating f(x){f^{'''}}\left( x \right), we get
f(x)=dydx(2(1+x)3)\Rightarrow {f^{''''}}\left( x \right) = \dfrac{{dy}}{{dx}}\left( {\dfrac{2}{{{{\left( {1 + x} \right)}^3}}}} \right)
On simplifying right-hand side of above equation, we get
f(x)=6(1+x)4\Rightarrow {f^{''''}}\left( x \right) = - \dfrac{6}{{{{\left( {1 + x} \right)}^4}}}
Putting x=0x = 0, we get
f(0)=6(1+0)4\Rightarrow {f^{''''}}\left( 0 \right) = - \dfrac{6}{{{{\left( {1 + 0} \right)}^4}}}
On simplification, we get
f(0)=6\Rightarrow {f^{''''}}\left( 0 \right) = - 6
Therefore, we get the values as f(0)=0f\left( 0 \right) = 0, f(0)=1{f'}\left( 0 \right) = 1, f(0)=1{f^{''}}\left( 0 \right) = - 1, f(0)=2{f^{'''}}\left( 0 \right) = 2 and f(0)=6{f^{''''}}\left( 0 \right) = - 6.
From Maclaurin’s theorem, we know
f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f(0)+...f\left( x \right) = f\left( 0 \right) + x{f'}\left( 0 \right) + \dfrac{{{x^2}}}{{2!}}{f^{''}}\left( 0 \right) + \dfrac{{{x^3}}}{{3!}}{f^{'''}}\left( 0 \right) + \dfrac{{{x^4}}}{{4!}}{f^{''''}}\left( 0 \right) + ...
Putting the values of f(x)f\left( x \right), f(0)f\left( 0 \right), f(0){f'}\left( 0 \right), f(0){f^{''}}\left( 0 \right), f(0){f^{'''}}\left( 0 \right) and f(0){f^{''''}}\left( 0 \right), we get
log(1+x)=0+x×(1)+x22!×(1)+x33!×(2)+x44!×(6)+...\Rightarrow \log \left( {1 + x} \right) = 0 + x \times \left( 1 \right) + \dfrac{{{x^2}}}{{2!}} \times \left( { - 1} \right) + \dfrac{{{x^3}}}{{3!}} \times \left( 2 \right) + \dfrac{{{x^4}}}{{4!}} \times \left( { - 6} \right) + ...
On simplification, we get
log(1+x)=xx22!+2x33!6x44!+...\Rightarrow \log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{{2!}} + \dfrac{{2{x^3}}}{{3!}} - \dfrac{{6{x^4}}}{{4!}} + ...
On further simplification we get
log(1+x)=xx22×1+2x33×2×16x44×3×2×1+...\Rightarrow \log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{{2 \times 1}} + \dfrac{{2{x^3}}}{{3 \times 2 \times 1}} - \dfrac{{6{x^4}}}{{4 \times 3 \times 2 \times 1}} + ...
After calculation, we get
log(1+x)=xx22+x33x44+...\Rightarrow \log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ...
Therefore, expanding log(1+x)\log \left( {1 + x} \right) in ascending powers of xx up to the term containing x4{x^4}, we get
log(1+x)=xx22+x33x44+...\log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ...

Note:
Here we have differentiated f(x)f\left( x \right) four times because we required expansion up to x4{x^4}. For example, if we require expansion up to x6{x^6} then we have to differentiate f(x)f\left( x \right) six times. So, we have to differentiate the given f(x)f\left( x \right) up to the power of xx required.