Question
Question: Expand \[\log \left( {1 + x} \right)\] in ascending powers of \[x\] up to the term containing \[{x^4...
Expand log(1+x) in ascending powers of x up to the term containing x4.
Solution
We will take f(x)=log(1+x). Then we will do successive differentiation of f(x) to find the values of f′(x), f′′(x), f′′′(x) and f′′′′(x). Putting x equals to zero, we will then find the values of f′(0), f′′(0), f′′′(0) andf′′′′(0). Putting all these values in Maclaurin’s theorem we will get the required expansion of log(1+x).
Complete step by step answer:
Let f(x)=log(1+x)
Putting x=0, we get
⇒f(0)=log(1+0)
⇒f(0)=log(1)
As log(1)=0, we get
⇒f(0)=0
Now, on differentiating f(x) we get
⇒f′(x)=dxdy(log(1+x))
On simplifying right-hand side of above equation, we get
⇒f′(x)=1+x1
Putting x=0, we get
⇒f′(0)=1+01
On simplification, we get
⇒f′(0)=1
Now, differentiating f′(x), we get
⇒f′′(x)=dxdy(1+x1)
On simplifying right-hand side of above equation, we get
⇒f′′(x)=−(1+x)21
Putting x=0, we get
⇒f′′(0)=−(1+0)21
On simplification, we get
⇒f′′(0)=−1
In the same way, differentiating f′′(x), we get
⇒f′′′(x)=dxdy(−(1+x)21)
On simplifying right-hand side of above equation, we get
⇒f′′′(x)=(1+x)32
Putting x=0, we get
⇒f′′′(0)=(1+0)32
On simplification, we get
⇒f′′′(0)=2
Now, differentiating f′′′(x), we get
⇒f′′′′(x)=dxdy((1+x)32)
On simplifying right-hand side of above equation, we get
⇒f′′′′(x)=−(1+x)46
Putting x=0, we get
⇒f′′′′(0)=−(1+0)46
On simplification, we get
⇒f′′′′(0)=−6
Therefore, we get the values as f(0)=0, f′(0)=1, f′′(0)=−1, f′′′(0)=2 and f′′′′(0)=−6.
From Maclaurin’s theorem, we know
f(x)=f(0)+xf′(0)+2!x2f′′(0)+3!x3f′′′(0)+4!x4f′′′′(0)+...
Putting the values of f(x), f(0), f′(0), f′′(0), f′′′(0) and f′′′′(0), we get
⇒log(1+x)=0+x×(1)+2!x2×(−1)+3!x3×(2)+4!x4×(−6)+...
On simplification, we get
⇒log(1+x)=x−2!x2+3!2x3−4!6x4+...
On further simplification we get
⇒log(1+x)=x−2×1x2+3×2×12x3−4×3×2×16x4+...
After calculation, we get
⇒log(1+x)=x−2x2+3x3−4x4+...
Therefore, expanding log(1+x) in ascending powers of x up to the term containing x4, we get
log(1+x)=x−2x2+3x3−4x4+...
Note:
Here we have differentiated f(x) four times because we required expansion up to x4. For example, if we require expansion up to x6 then we have to differentiate f(x) six times. So, we have to differentiate the given f(x) up to the power of x required.