Solveeit Logo

Question

Question: Expand \[\left( x – 1 \right)^{4}\]...

Expand (x1)4\left( x – 1 \right)^{4}

Explanation

Solution

In this question, we need to expand the given algebraic expression (x1)4\left( x – 1 \right)^{4}. We can expand the given expression by using the binomial expansion method. Binomial expression is nothing but the expression contains two or more terms connected by mathematical operations like addition, subtraction etc… By using the binomial expansion formula, we can expand the given expression easily.
Formula used :
Binomial formula to expand (ab)n\left( a – b \right){{}^{n}} is nC0anb0nC1an1 b1+nC2an2 b2nC3an3 b3 +{{}{{}^{n}}}C_{0} a{{}^{n}}b^{0} - {{}{{}^{n}}}C_{1}a^{n – 1}\ b^{1} + {{}^{n}}C_{2} a^{n – 2}\ b^{2}-{{}^{n}}C_{3} a^{n – 3}\ b^{3}\ + \ldots

Complete step-by-step solution:
Given,
(x1)4\left( x – 1 \right)^{4}
We can expand the given expression in the binomial expansion method.
(ab)n=nC0anb0nC1a(n1)b1+nC2an2b2 nC3an3b3+\left( a – b \right){{}^{n}} ={{}^{n}}C_{0} a{{}^{n}}b^{0} -{{}^{n}}C_{1} a^{(n – 1)}b^{1} + {{}^{n}}C_{2} a^{n – 2}b^{2}\ -{{}^{n}}C_{3} a^{n – 3}b^{3} + \ldots
Here a=xa = x and b=1b = 1
By applying the formula,
We get,
(x1)4=4C0x4(1)04C1x41(1)1+4C2x42(1)2 4C3x43(1)3+4C4x44(1)4\left( x – 1 \right)^{4} = {{}^{4}}C_{0} x^{4}\left( 1 \right)^{0} - {{}^{4}}C_{1} x^{4 – 1}\left( 1 \right)^{1} +{{}^{4}}C_{2} x^{4 – 2}\left( 1 \right)^{2}\ -{{}^{4}}C_{3} x^{4 – 3}\left( 1 \right)^{3} +{{}^{4}}C_{4} x^{4 – 4}\left( 1 \right)^{4}
We know that 4C0=4C4=1{{}^{4}}C_{0}= {{}^{4}}C_{4}= 1, 4C1=4C3=4{{}^{4}}C_{1}={{}^{4}}C_{3} = 4 and also 4C2=6{{}^{4}}C_{2} = 6
On Simplifying,
We get,
(x1)4=1(x4)(1)4(x3)(1)+6(x2)(1)4(x1)(1)+1(x0)(1)\left( x – 1 \right)^{4} = 1\left( x^{4} \right)\left( 1 \right) – 4\left( x^{3} \right)\left( 1 \right) + 6\left( x^{2} \right)\left( 1 \right) – 4\left( x^{1} \right)\left( 1 \right) + 1\left( x^{0} \right)\left( 1 \right)
We know that x0x^{0} is 11
=x44x3+6x24x+1= x^{4} – 4x^{3} + 6x^{2} – 4x + 1
Thus we get
(x1)4=x44x3+6x24x+1\left( x – 1 \right)^{4} = x^{4} – 4x^{3} + 6x^{2} – 4x + 1
Final answer :
The expansion of (x1)4 \left( x – 1 \right)^{4}\ is x44x3+6x24x+1x^{4} – 4x^{3} + 6x^{2} – 4x + 1

Note: An algebraic expression is nothing up it is built up with integers, constants, variables and mathematical operations (addition, subtraction, multiplication, division etc… ) In mathematics, a symbol (letter) which doesn’t have a value is called a variable. Similarly which has a fixed value is called constant. Expanding algebraic expression is combining one or more variables or numbers by performing the given algebraic operations. Binomial theorem is a powerful tool used in expanding in the concepts of algebra, probability etc..