Solveeit Logo

Question

Question: Find the equations of tangents and normals to the curve at the point on it. $y = x^2 + 2e^x + 2$ at...

Find the equations of tangents and normals to the curve at the point on it.

y=x2+2ex+2y = x^2 + 2e^x + 2 at (0, 4)

Answer

Tangent: y=2x+4\displaystyle y = 2x + 4

Normal: y=x2+4\displaystyle y = -\frac{x}{2} + 4

Explanation

Solution

  1. Given the curve

    y=x2+2ex+2y = x^2 + 2e^x + 2

    Differentiate with respect to xx:

    dydx=2x+2ex.\frac{dy}{dx} = 2x + 2e^x.
  2. At the point (0,4)(0, 4):

    dydxx=0=2(0)+2e0=2.\left.\frac{dy}{dx}\right|_{x=0} = 2(0) + 2e^0 = 2.

    So, the slope of the tangent is 2.

  3. Equation of the tangent line (using point-slope form):

    y4=2(x0)y=2x+4.y - 4 = 2(x - 0) \quad \Rightarrow \quad y = 2x + 4.
  4. The slope of the normal is the negative reciprocal of 2, i.e.,

    mnormal=12.m_{\text{normal}} = -\frac{1}{2}.
  5. Equation of the normal line:

    y4=12(x0)y=x2+4.y - 4 = -\frac{1}{2}(x - 0) \quad \Rightarrow \quad y = -\frac{x}{2} + 4.

Explanation (Core Steps):

  • Differentiate y=x2+2ex+2y = x^2 + 2e^x + 2 to get dydx=2x+2ex\frac{dy}{dx} = 2x + 2e^x.
  • At x=0x=0, slope =2=2.
  • Tangent: y=2x+4y = 2x + 4.
  • Normal: Slope 12-\frac{1}{2}, Equation: y=x2+4y = -\frac{x}{2} + 4.