Solveeit Logo

Question

Question: An equilibrium mixture at 300 K contains N$_2$O$_4$ and NO$_2$ at 0.28 and 1.1 atm, respectively. If...

An equilibrium mixture at 300 K contains N2_2O4_4 and NO2_2 at 0.28 and 1.1 atm, respectively. If the volume of container is doubled, calculate the new equilibrium pressure of two gases.

Answer

P(N_2O_4) = 0.095 atm, P(NO_2) = 0.64 atm

Explanation

Solution

The problem involves calculating new equilibrium pressures after a volume change for the dissociation of N2_2O4_4 into NO2_2.

The reaction is: N2O4(g)2NO2(g)\text{N}_2\text{O}_4(\text{g}) \rightleftharpoons 2\text{NO}_2(\text{g})

1. Calculate the equilibrium constant (KpK_p) from the initial conditions: At 300 K, the initial equilibrium pressures are PN2O4=0.28 atmP_{\text{N}_2\text{O}_4} = 0.28 \text{ atm} and PNO2=1.1 atmP_{\text{NO}_2} = 1.1 \text{ atm}. The expression for KpK_p is: Kp=(PNO2)2PN2O4K_p = \frac{(P_{\text{NO}_2})^2}{P_{\text{N}_2\text{O}_4}} Substitute the given values: Kp=(1.1)20.28=1.210.284.3214 atmK_p = \frac{(1.1)^2}{0.28} = \frac{1.21}{0.28} \approx 4.3214 \text{ atm} Since temperature is constant, KpK_p remains the same for the new equilibrium.

2. Determine instantaneous pressures after volume change: When the volume of the container is doubled at constant temperature, the pressure of each gas is halved (according to Boyle's Law, P1/VP \propto 1/V). Instantaneous pressures immediately after doubling the volume (before equilibrium shifts): PN2O4=0.282=0.14 atmP'_{\text{N}_2\text{O}_4} = \frac{0.28}{2} = 0.14 \text{ atm} PNO2=1.12=0.55 atmP'_{\text{NO}_2} = \frac{1.1}{2} = 0.55 \text{ atm}

3. Calculate the reaction quotient (QpQ_p) and predict the shift: Calculate QpQ_p using the instantaneous pressures: Qp=(PNO2)2PN2O4=(0.55)20.14=0.30250.142.1607 atmQ_p = \frac{(P'_{\text{NO}_2})^2}{P'_{\text{N}_2\text{O}_4}} = \frac{(0.55)^2}{0.14} = \frac{0.3025}{0.14} \approx 2.1607 \text{ atm} Compare QpQ_p with KpK_p: Since Qp(2.1607)<Kp(4.3214)Q_p (2.1607) < K_p (4.3214), the reaction will shift in the forward direction (towards products) to reach equilibrium.

4. Set up an ICE (Initial, Change, Equilibrium) table for pressures: Let xx be the change in partial pressure of N2_2O4_4 at equilibrium.

SpeciesInitial Pressure (atm)Change (atm)Equilibrium Pressure (atm)
N2_2O4_40.14x-x0.14x0.14 - x
NO2_20.55+2x+2x0.55+2x0.55 + 2x

5. Solve for xx using the KpK_p expression: Kp=(PNO2,eq)2PN2O4,eqK_p = \frac{(P_{\text{NO}_2, \text{eq}})^2}{P_{\text{N}_2\text{O}_4, \text{eq}}} 4.3214=(0.55+2x)2(0.14x)4.3214 = \frac{(0.55 + 2x)^2}{(0.14 - x)} Rearrange and solve the quadratic equation: 4.3214(0.14x)=(0.55+2x)24.3214 (0.14 - x) = (0.55 + 2x)^2 0.60504.3214x=0.3025+2.2x+4x20.6050 - 4.3214x = 0.3025 + 2.2x + 4x^2 4x2+(2.2+4.3214)x+(0.30250.6050)=04x^2 + (2.2 + 4.3214)x + (0.3025 - 0.6050) = 0 4x2+6.5214x0.3025=04x^2 + 6.5214x - 0.3025 = 0 Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: x=6.5214±(6.5214)24(4)(0.3025)2(4)x = \frac{-6.5214 \pm \sqrt{(6.5214)^2 - 4(4)(-0.3025)}}{2(4)} x=6.5214±42.5287+4.848x = \frac{-6.5214 \pm \sqrt{42.5287 + 4.84}}{8} x=6.5214±47.36878x = \frac{-6.5214 \pm \sqrt{47.3687}}{8} x=6.5214±6.88258x = \frac{-6.5214 \pm 6.8825}{8} Two possible values for xx: x1=6.5214+6.88258=0.36118=0.0451375x_1 = \frac{-6.5214 + 6.8825}{8} = \frac{0.3611}{8} = 0.0451375 x2=6.52146.88258=13.40398=1.6754875x_2 = \frac{-6.5214 - 6.8825}{8} = \frac{-13.4039}{8} = -1.6754875 Since the reaction shifts forward, xx must be positive. Also, 0.14x0.14 - x must be positive, which means x<0.14x < 0.14. Therefore, x=0.0451375x = 0.0451375 is the valid solution.

6. Calculate the new equilibrium pressures: PN2O4,eq=0.14x=0.140.0451375=0.0948625 atmP_{\text{N}_2\text{O}_4, \text{eq}} = 0.14 - x = 0.14 - 0.0451375 = 0.0948625 \text{ atm} PNO2,eq=0.55+2x=0.55+2(0.0451375)=0.55+0.090275=0.640275 atmP_{\text{NO}_2, \text{eq}} = 0.55 + 2x = 0.55 + 2(0.0451375) = 0.55 + 0.090275 = 0.640275 \text{ atm}

Rounding to two significant figures: PN2O4,eq0.095 atmP_{\text{N}_2\text{O}_4, \text{eq}} \approx 0.095 \text{ atm} PNO2,eq0.64 atmP_{\text{NO}_2, \text{eq}} \approx 0.64 \text{ atm}

The new equilibrium pressure of N2_2O4_4 is approximately 0.095 atm and that of NO2_2 is approximately 0.64 atm.

Explanation of the solution:

  1. Calculate KpK_p from initial equilibrium pressures.
  2. Halve initial partial pressures due to volume doubling.
  3. Calculate QpQ_p with new pressures; since Qp<KpQ_p < K_p, equilibrium shifts forward.
  4. Set up an ICE table with changes in pressure (+2x+2x for NO2_2, x-x for N2_2O4_4).
  5. Substitute equilibrium expressions into KpK_p and solve the resulting quadratic equation for xx.
  6. Calculate new equilibrium pressures using the valid xx value.