Solveeit Logo

Question

Question: The degree of dissociation of N$_2$O$_4$ into NO$_2$ at 1 atm 40°C is 0.310. Calculate its K$_p$ at ...

The degree of dissociation of N2_2O4_4 into NO2_2 at 1 atm 40°C is 0.310. Calculate its Kp_p at 40°C. Also report the degree of dissociation at 10 atm pressure at same temperature.

Answer

Kp_p = 0.425 atm, degree of dissociation = 0.103

Explanation

Solution

The problem involves the dissociation of N2_2O4_4 into NO2_2 and requires calculating the equilibrium constant Kp_p at a given temperature and then the degree of dissociation at a different pressure.

The reaction is:

N2O4(g)2NO2(g)\text{N}_2\text{O}_4(\text{g}) \rightleftharpoons 2\text{NO}_2(\text{g})

Part 1: Calculate Kp_p at 40°C

Let's assume we start with 1 mole of N2_2O4_4.

Initial moles:

N2O4=1\text{N}_2\text{O}_4 = 1 NO2=0\text{NO}_2 = 0

At equilibrium, if the degree of dissociation is α\alpha:

Moles of N2O4=(1α)\text{N}_2\text{O}_4 = (1 - \alpha) Moles of NO2=2α\text{NO}_2 = 2\alpha

Total moles at equilibrium, ntotal=(1α)+2α=1+αn_{\text{total}} = (1 - \alpha) + 2\alpha = 1 + \alpha

The partial pressure of each gas is given by:

PN2O4=(1α1+α)PtotalP_{\text{N}_2\text{O}_4} = \left(\frac{1 - \alpha}{1 + \alpha}\right) P_{\text{total}} PNO2=(2α1+α)PtotalP_{\text{NO}_2} = \left(\frac{2\alpha}{1 + \alpha}\right) P_{\text{total}}

The equilibrium constant KpK_p is defined as:

Kp=(PNO2)2PN2O4K_p = \frac{(P_{\text{NO}_2})^2}{P_{\text{N}_2\text{O}_4}}

Substitute the expressions for partial pressures:

Kp=(2α1+αPtotal)2(1α1+α)PtotalK_p = \frac{\left(\frac{2\alpha}{1 + \alpha} P_{\text{total}}\right)^2}{\left(\frac{1 - \alpha}{1 + \alpha}\right) P_{\text{total}}} Kp=4α2(1+α)2Ptotal21α1+αPtotalK_p = \frac{\frac{4\alpha^2}{(1 + \alpha)^2} P_{\text{total}}^2}{\frac{1 - \alpha}{1 + \alpha} P_{\text{total}}} Kp=4α2Ptotal(1α)(1+α)K_p = \frac{4\alpha^2 P_{\text{total}}}{(1 - \alpha)(1 + \alpha)} Kp=4α2Ptotal1α2K_p = \frac{4\alpha^2 P_{\text{total}}}{1 - \alpha^2}

Given data for the first scenario:

α=0.310\alpha = 0.310 Ptotal=1 atmP_{\text{total}} = 1 \text{ atm}

Substitute these values into the KpK_p expression:

Kp=4×(0.310)2×11(0.310)2K_p = \frac{4 \times (0.310)^2 \times 1}{1 - (0.310)^2} Kp=4×0.096110.0961K_p = \frac{4 \times 0.0961}{1 - 0.0961} Kp=0.38440.9039K_p = \frac{0.3844}{0.9039} Kp0.4253 atmK_p \approx 0.4253 \text{ atm}

Part 2: Calculate the degree of dissociation at 10 atm pressure at the same temperature

The equilibrium constant KpK_p depends only on temperature. Since the temperature is the same (40°C), the KpK_p value remains constant:

Kp=0.4253 atmK_p = 0.4253 \text{ atm}

Now, we need to find the new degree of dissociation, let's call it α\alpha', when Ptotal=10 atmP_{\text{total}} = 10 \text{ atm}.

Using the same KpK_p expression:

Kp=4(α)2Ptotal1(α)2K_p = \frac{4(\alpha')^2 P_{\text{total}}}{1 - (\alpha')^2} 0.4253=4(α)2×101(α)20.4253 = \frac{4(\alpha')^2 \times 10}{1 - (\alpha')^2} 0.4253=40(α)21(α)20.4253 = \frac{40(\alpha')^2}{1 - (\alpha')^2}

Rearrange the equation to solve for α\alpha':

0.4253(1(α)2)=40(α)20.4253 (1 - (\alpha')^2) = 40(\alpha')^2 0.42530.4253(α)2=40(α)20.4253 - 0.4253(\alpha')^2 = 40(\alpha')^2 0.4253=40(α)2+0.4253(α)20.4253 = 40(\alpha')^2 + 0.4253(\alpha')^2 0.4253=(40+0.4253)(α)20.4253 = (40 + 0.4253)(\alpha')^2 0.4253=40.4253(α)20.4253 = 40.4253(\alpha')^2 (α)2=0.425340.4253(\alpha')^2 = \frac{0.4253}{40.4253} (α)20.01052(\alpha')^2 \approx 0.01052

Take the square root to find α\alpha':

α=0.01052\alpha' = \sqrt{0.01052} α0.10257\alpha' \approx 0.10257

Rounding to three significant figures (consistent with the given α\alpha value), we get:

α0.103\alpha' \approx 0.103

This result is consistent with Le Chatelier's principle: increasing the pressure shifts the equilibrium towards the side with fewer moles of gas (reactants), thus decreasing the degree of dissociation. (0.103 < 0.310).

Explanation of the solution:

  1. Define equilibrium: For the dissociation N2_2O4_4(g) \rightleftharpoons 2NO2_2(g), if α\alpha is the degree of dissociation, the equilibrium moles for 1 initial mole of N2_2O4_4 are (1α)(1-\alpha) for N2_2O4_4 and 2α2\alpha for NO2_2. Total moles are (1+α)(1+\alpha).

  2. Express partial pressures: Partial pressure of a gas is its mole fraction multiplied by the total pressure.

    PN2O4=1α1+αPtotalP_{\text{N}_2\text{O}_4} = \frac{1-\alpha}{1+\alpha} P_{\text{total}}

    PNO2=2α1+αPtotalP_{\text{NO}_2} = \frac{2\alpha}{1+\alpha} P_{\text{total}}

  3. Formulate Kp_p expression: Kp=(PNO2)2PN2O4=4α2Ptotal1α2K_p = \frac{(P_{\text{NO}_2})^2}{P_{\text{N}_2\text{O}_4}} = \frac{4\alpha^2 P_{\text{total}}}{1-\alpha^2}.

  4. Calculate Kp_p: Substitute the given α=0.310\alpha = 0.310 and Ptotal=1 atmP_{\text{total}} = 1 \text{ atm} into the KpK_p expression to find Kp0.425 atmK_p \approx 0.425 \text{ atm}.

  5. Calculate new α\alpha': Since KpK_p is temperature-dependent, it remains constant at 40°C. Use the calculated KpK_p and the new total pressure Ptotal=10 atmP_{\text{total}} = 10 \text{ atm} in the KpK_p expression to solve for the new degree of dissociation α\alpha'. This yields α0.103\alpha' \approx 0.103.