Solveeit Logo

Question

Question: In the arrangement shown in figure, if the acceleration of B is a, then find the acceleration of A....

In the arrangement shown in figure, if the acceleration of B is a, then find the acceleration of A.

A

asin(θα)sinθ\frac{a \sin(\theta - \alpha)}{\sin \theta}

B

acos(θα)cosθ\frac{a \cos(\theta - \alpha)}{\cos \theta}

C

asin(θ+α)sinθ\frac{a \sin(\theta + \alpha)}{\sin \theta}

D

acos(θ+α)cosθ\frac{a \cos(\theta + \alpha)}{\cos \theta}

Answer

The acceleration of A is asin(θα)sinθ\frac{a \sin(\theta - \alpha)}{\sin \theta}.

Explanation

Solution

Let the acceleration of block A be aA=aAi^\vec{a}_A = a_A \hat{i}. Block B moves along an inclined plane with acceleration aB=a(cosαi^sinαj^)\vec{a}_B = a (\cos \alpha \hat{i} - \sin \alpha \hat{j}). The acceleration of B relative to A is aB/A=aBaA=[acosαaA]i^[asinα]j^\vec{a}_{B/A} = \vec{a}_B - \vec{a}_A = [a \cos \alpha - a_A] \hat{i} - [a \sin \alpha] \hat{j}. The unit normal vector to the contact surface is n^=sinθi^+cosθj^\hat{n} = -\sin \theta \hat{i} + \cos \theta \hat{j}. For no slipping, aB/An^=0\vec{a}_{B/A} \cdot \hat{n} = 0. ([acosαaA]i^[asinα]j^)(sinθi^+cosθj^)=0([a \cos \alpha - a_A] \hat{i} - [a \sin \alpha] \hat{j}) \cdot (-\sin \theta \hat{i} + \cos \theta \hat{j}) = 0 (acosαaA)(sinθ)+(asinα)(cosθ)=0(a \cos \alpha - a_A)(-\sin \theta) + (-a \sin \alpha)(\cos \theta) = 0 acosαsinθ+aAsinθasinαcosθ=0-a \cos \alpha \sin \theta + a_A \sin \theta - a \sin \alpha \cos \theta = 0 aAsinθ=a(cosαsinθsinαcosθ)a_A \sin \theta = a (\cos \alpha \sin \theta - \sin \alpha \cos \theta) aAsinθ=asin(θα)a_A \sin \theta = a \sin(\theta - \alpha) aA=asin(θα)sinθa_A = \frac{a \sin(\theta - \alpha)}{\sin \theta}