Solveeit Logo

Question

Question: If the origin is shifted to the point (1, -2) without rotation of axes what do the following equatio...

If the origin is shifted to the point (1, -2) without rotation of axes what do the following equations become?

i. 2x2+y24x+4y=02x^2 + y^2 -4x + 4y = 0 and ii. y24x+4y+8=0y^2 - 4x + 4y + 8 = 0.

Answer

i. 2x2+y26=02x'^2 + y'^2 - 6 = 0 and ii. y24x=0y'^2 - 4x' = 0

Explanation

Solution

The origin is shifted from (0,0) to (1, -2). The transformation equations are x=x+1x = x' + 1 and y=y2y = y' - 2, where (x,y)(x, y) are the original coordinates and (x,y)(x', y') are the new coordinates.

i. For 2x2+y24x+4y=02x^2 + y^2 -4x + 4y = 0: 2(x+1)2+(y2)24(x+1)+4(y2)=02(x'+1)^2 + (y'-2)^2 - 4(x'+1) + 4(y'-2) = 0 2(x2+2x+1)+(y24y+4)4x4+4y8=02(x'^2 + 2x' + 1) + (y'^2 - 4y' + 4) - 4x' - 4 + 4y' - 8 = 0 2x2+4x+2+y24y+44x4+4y8=02x'^2 + 4x' + 2 + y'^2 - 4y' + 4 - 4x' - 4 + 4y' - 8 = 0 2x2+y26=02x'^2 + y'^2 - 6 = 0

ii. For y24x+4y+8=0y^2 - 4x + 4y + 8 = 0: (y2)24(x+1)+4(y2)+8=0(y'-2)^2 - 4(x'+1) + 4(y'-2) + 8 = 0 (y24y+4)4x4+4y8+8=0(y'^2 - 4y' + 4) - 4x' - 4 + 4y' - 8 + 8 = 0 y24y+44x4+4y=0y'^2 - 4y' + 4 - 4x' - 4 + 4y' = 0 y24x=0y'^2 - 4x' = 0

The transformed equations are: i. 2x2+y26=02x'^2 + y'^2 - 6 = 0 ii. y24x=0y'^2 - 4x' = 0