Solveeit Logo

Question

Question: Find the orthogonal trajectory of the family of the curve \(x^2 + y^2 = ax\)....

Find the orthogonal trajectory of the family of the curve x2+y2=axx^2 + y^2 = ax.

Answer

x^2+y^2 = k,y

Explanation

Solution

We are given the family

x2+y2=ax,x^2+y^2 = ax,

where aa is a parameter.

Step 1. Find the differential equation of the family

Differentiate both sides with respect to xx:

ddx(x2+y2)=ddx(ax).\frac{d}{dx}(x^2+y^2)=\frac{d}{dx}(ax).

This gives:

2x+2ydydx=a.2x + 2y \frac{dy}{dx} = a.

Since from the original family a=x2+y2xa = \frac{x^2+y^2}{x} (assuming x0x\ne0), substitute into the differentiated equation:

2x+2ydydx=x2+y2x.2x+2y\frac{dy}{dx} = \frac{x^2+y^2}{x}.

Multiply both sides by xx:

2x2+2xydydx=x2+y2.2x^2 + 2xy\frac{dy}{dx} = x^2+y^2.

Solve for dydx\frac{dy}{dx}:

2xydydx=y2x2dydx=y2x22xy.2xy\frac{dy}{dx} = y^2 - x^2 \quad\Longrightarrow\quad \frac{dy}{dx} = \frac{y^2-x^2}{2xy}.

Step 2. Write the differential equation for the orthogonal trajectories

For orthogonal trajectories, the slope at any point must be the negative reciprocal. Thus, if

m=y2x22xy,m = \frac{y^2-x^2}{2xy},

then the slope of the orthogonal trajectories is

dydx=1m=2xyy2x2.\frac{dy}{dx} = -\frac{1}{m} = -\frac{2xy}{y^2-x^2}.

Step 3. Solve the differential equation using substitution

Let

v=yxy=vxanddydx=v+xdvdx.v=\frac{y}{x} \quad\Longrightarrow\quad y = vx \quad\text{and}\quad \frac{dy}{dx} = v + x\frac{dv}{dx}.

Substitute into the orthogonal differential equation:

v+xdvdx=2x(vx)(v2x2x2)=2vx2x2(v21)=2vv21.v + x\frac{dv}{dx} = -\frac{2x(vx)}{(v^2x^2-x^2)} = -\frac{2v x^2}{x^2(v^2-1)} = -\frac{2v}{v^2-1}.

This simplifies to:

xdvdx=2vv21v=v[2v21+1].x\frac{dv}{dx} = -\frac{2v}{v^2-1} - v = -v\left[\frac{2}{v^2-1}+1\right].

Combine the terms in the bracket:

2v21+1=2+(v21)v21=v2+1v21.\frac{2}{v^2-1}+1 = \frac{2+ (v^2-1)}{v^2-1} = \frac{v^2+1}{v^2-1}.

Thus,

xdvdx=vv2+1v21.x\frac{dv}{dx} = -v\frac{v^2+1}{v^2-1}.

Separate the variables:

v21v(v2+1)dv=dxx.\frac{v^2-1}{v(v^2+1)}\,dv = -\frac{dx}{x}.

Step 4. Integrate both sides

We now integrate:

v21v(v2+1)dv=dxx.\int \frac{v^2-1}{v(v^2+1)}\,dv = -\int \frac{dx}{x}.

Perform partial fractions on the integrand. Write:

v21v(v2+1)=Av+Bv+Cv2+1.\frac{v^2-1}{v(v^2+1)} = \frac{A}{v}+\frac{Bv+C}{v^2+1}.

Clearing the denominators:

v21=A(v2+1)+(Bv+C)v=(A+B)v2+Cv+A.v^2-1 = A(v^2+1) + (Bv+C)v = (A+B)v^2+ Cv+A.

Matching coefficients:

  • Coefficient of v2v^2: A+B=1A+B=1.
  • Coefficient of vv: C=0C=0.
  • Constant term: A=1A=-1.

Thus,

A=1,B=2,C=0.A=-1,\quad B=2,\quad C=0.

So the integrand becomes:

1v+2vv2+1.\frac{-1}{v} + \frac{2v}{v^2+1}.

Integrate term by term:

(1v+2vv2+1)dv=lnv+lnv2+1+C1=lnv2+1v+C1.\int \left(-\frac{1}{v} + \frac{2v}{v^2+1}\right)dv = -\ln|v| + \ln|v^2+1| + C_1 = \ln\left|\frac{v^2+1}{v}\right|+C_1.

The right side integrates to:

dxx=lnx+C2.-\int \frac{dx}{x} = -\ln|x|+C_2.

Combining the constants, we have:

lnv2+1v=lnx+C.\ln\left|\frac{v^2+1}{v}\right| = -\ln|x| + C.

Step 5. Express the answer in terms of xx and yy

Recall that v=yxv=\frac{y}{x}. Notice that:

v2+1v=(yx)2+1yx=y2x2+1yx=x2+y2x2yx=x2+y2xy.\frac{v^2+1}{v} = \frac{\left(\frac{y}{x}\right)^2+1}{\frac{y}{x}} = \frac{\frac{y^2}{x^2}+1}{\frac{y}{x}} = \frac{\frac{x^2+y^2}{x^2}}{\frac{y}{x}} = \frac{x^2+y^2}{xy}.

Thus, the integrated result becomes:

lnx2+y2xy=lnx+C.\ln\left|\frac{x^2+y^2}{xy}\right| = -\ln|x| + C.

Exponentiating both sides gives:

x2+y2xy=Kxorx2+y2=K  y,\frac{x^2+y^2}{xy} = \frac{K}{x} \quad\text{or}\quad x^2+y^2 = K\; y,

where KK is an arbitrary constant.

Final Answer:

The orthogonal trajectories of the family

x2+y2=axx^2+y^2=ax

are given by

x2+y2=ky,x^2+y^2 = k\,y,

where kk is an arbitrary constant.