Solveeit Logo

Question

Question: Time Period = 4 Sec., find Time at which they are at Same position for First time., Velocity & disp ...

Time Period = 4 Sec., find Time at which they are at Same position for First time., Velocity & disp from MP at that time.

Answer

Time = 11/6 s, Displacement from MP = -A * (sqrt(3)-1) / (2sqrt(2)), Velocity Magnitude = Api*(sqrt(3)+1) / (4*sqrt(2))

Explanation

Solution

The problem describes two pendulums undergoing Simple Harmonic Motion (SHM) with the same time period T=4T = 4 seconds. We need to find the time when they are at the same position for the first time, their common displacement from the mean position (MP) at that time, and their velocities.

First, let's find the angular frequency ω\omega: ω=2πT=2π4=π2\omega = \frac{2\pi}{T} = \frac{2\pi}{4} = \frac{\pi}{2} rad/s.

Let the amplitude of oscillation for both pendulums be AA.

1. Equations of Motion for each pendulum:

  • Pendulum 1:
    At t=0t=0, it is at the Mean Position (x1=0x_1=0) and moving to the left (negative velocity).
    The general equation for SHM is x(t)=Asin(ωt+ϕ)x(t) = A \sin(\omega t + \phi).
    At t=0t=0, x1(0)=Asin(ϕ1)=0    ϕ1=0x_1(0) = A \sin(\phi_1) = 0 \implies \phi_1 = 0 or ϕ1=π\phi_1 = \pi.
    The velocity is v1(t)=dx1dt=Aωcos(ωt+ϕ1)v_1(t) = \frac{dx_1}{dt} = A\omega \cos(\omega t + \phi_1).
    At t=0t=0, v1(0)=Aωcos(ϕ1)v_1(0) = A\omega \cos(\phi_1). Since it's moving left, v1(0)<0v_1(0) < 0.
    This requires cos(ϕ1)<0\cos(\phi_1) < 0. Thus, ϕ1=π\phi_1 = \pi.
    So, the equation for Pendulum 1 is:
    x1(t)=Asin(ωt+π)=Asin(ωt)x_1(t) = A \sin(\omega t + \pi) = -A \sin(\omega t).

  • Pendulum 2:
    At t=0t=0, it is at x2=A/2x_2 = A/2 and moving to the right (positive velocity).
    Using x2(t)=Asin(ωt+ϕ2)x_2(t) = A \sin(\omega t + \phi_2):
    At t=0t=0, x2(0)=Asin(ϕ2)=A/2    sin(ϕ2)=1/2x_2(0) = A \sin(\phi_2) = A/2 \implies \sin(\phi_2) = 1/2.
    This implies ϕ2=π/6\phi_2 = \pi/6 or ϕ2=5π/6\phi_2 = 5\pi/6.
    The velocity is v2(t)=Aωcos(ωt+ϕ2)v_2(t) = A\omega \cos(\omega t + \phi_2).
    At t=0t=0, v2(0)=Aωcos(ϕ2)v_2(0) = A\omega \cos(\phi_2). Since it's moving right, v2(0)>0v_2(0) > 0.
    This requires cos(ϕ2)>0\cos(\phi_2) > 0. Thus, ϕ2=π/6\phi_2 = \pi/6.
    So, the equation for Pendulum 2 is:
    x2(t)=Asin(ωt+π/6)x_2(t) = A \sin(\omega t + \pi/6).

2. Time when they are at the same position for the first time:

Set x1(t)=x2(t)x_1(t) = x_2(t): Asin(ωt)=Asin(ωt+π/6)-A \sin(\omega t) = A \sin(\omega t + \pi/6) sin(ωt+π/6)+sin(ωt)=0\sin(\omega t + \pi/6) + \sin(\omega t) = 0 Using the sum-to-product trigonometric identity sinC+sinD=2sin(C+D2)cos(CD2)\sin C + \sin D = 2 \sin\left(\frac{C+D}{2}\right) \cos\left(\frac{C-D}{2}\right): 2sin(ωt+π/6+ωt2)cos(ωt+π/6ωt2)=02 \sin\left(\frac{\omega t + \pi/6 + \omega t}{2}\right) \cos\left(\frac{\omega t + \pi/6 - \omega t}{2}\right) = 0 2sin(ωt+π12)cos(π12)=02 \sin\left(\omega t + \frac{\pi}{12}\right) \cos\left(\frac{\pi}{12}\right) = 0 Since cos(π/12)0\cos(\pi/12) \neq 0, we must have: sin(ωt+π12)=0\sin\left(\omega t + \frac{\pi}{12}\right) = 0 For the first positive time tt, we need the smallest positive value for the argument. ωt+π12=π\omega t + \frac{\pi}{12} = \pi (since ωt+π/12=0\omega t + \pi/12 = 0 would give t<0t<0) ωt=ππ12=11π12\omega t = \pi - \frac{\pi}{12} = \frac{11\pi}{12} Substitute ω=π/2\omega = \pi/2: π2t=11π12\frac{\pi}{2} t = \frac{11\pi}{12} t=11π12×2π=116t = \frac{11\pi}{12} \times \frac{2}{\pi} = \frac{11}{6} seconds.

3. Displacement from Mean Position at that time:

Substitute t=116t = \frac{11}{6} s into x1(t)x_1(t): x=Asin(π2×116)=Asin(11π12)x = -A \sin\left(\frac{\pi}{2} \times \frac{11}{6}\right) = -A \sin\left(\frac{11\pi}{12}\right) We know that sin(11π12)=sin(ππ12)=sin(π/12)\sin(\frac{11\pi}{12}) = \sin(\pi - \frac{\pi}{12}) = \sin(\pi/12). sin(15)=sin(4530)=sin45cos30cos45sin30\sin(15^\circ) = \sin(45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ =12321212=3122= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3}-1}{2\sqrt{2}}. So, the displacement is: x=A3122x = -A \frac{\sqrt{3}-1}{2\sqrt{2}}.

4. Velocity at that time:

For Pendulum 1: v1(t)=Aωcos(ωt)v_1(t) = -A\omega \cos(\omega t) v1(116)=A(π2)cos(11π12)v_1\left(\frac{11}{6}\right) = -A\left(\frac{\pi}{2}\right) \cos\left(\frac{11\pi}{12}\right) We know that cos(11π12)=cos(ππ12)=cos(π/12)\cos(\frac{11\pi}{12}) = \cos(\pi - \frac{\pi}{12}) = -\cos(\pi/12). cos(15)=cos(4530)=cos45cos30+sin45sin30\cos(15^\circ) = \cos(45^\circ - 30^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ =1232+1212=3+122= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3}+1}{2\sqrt{2}}. So, v1(116)=A(π2)(3+122)=Aπ(3+1)42v_1\left(\frac{11}{6}\right) = -A\left(\frac{\pi}{2}\right) \left(-\frac{\sqrt{3}+1}{2\sqrt{2}}\right) = A\frac{\pi(\sqrt{3}+1)}{4\sqrt{2}}.

For Pendulum 2: v2(t)=Aωcos(ωt+π/6)v_2(t) = A\omega \cos(\omega t + \pi/6) v2(116)=A(π2)cos(11π12+π6)=A(π2)cos(11π+2π12)=A(π2)cos(13π12)v_2\left(\frac{11}{6}\right) = A\left(\frac{\pi}{2}\right) \cos\left(\frac{11\pi}{12} + \frac{\pi}{6}\right) = A\left(\frac{\pi}{2}\right) \cos\left(\frac{11\pi + 2\pi}{12}\right) = A\left(\frac{\pi}{2}\right) \cos\left(\frac{13\pi}{12}\right) We know that cos(13π12)=cos(π+π12)=cos(π/12)=3+122\cos(\frac{13\pi}{12}) = \cos(\pi + \frac{\pi}{12}) = -\cos(\pi/12) = -\frac{\sqrt{3}+1}{2\sqrt{2}}. So, v2(116)=A(π2)(3+122)=Aπ(3+1)42v_2\left(\frac{11}{6}\right) = A\left(\frac{\pi}{2}\right) \left(-\frac{\sqrt{3}+1}{2\sqrt{2}}\right) = -A\frac{\pi(\sqrt{3}+1)}{4\sqrt{2}}.

At the time they are at the same position, their velocities are equal in magnitude but opposite in direction. The question asks for "Velocity", which typically refers to the magnitude unless specified. So, the magnitude of velocity is Aπ(3+1)42A\frac{\pi(\sqrt{3}+1)}{4\sqrt{2}}.