Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Examine the continuity of f, where f is defined by
f(x)=\left\\{\begin{matrix} sin\,x-cos\,x, &if\,x\neq0 \\\ -1,& if\,x=0 \end{matrix}\right.

Answer

f(x)=\left\\{\begin{matrix} sin\,x-cos\,x, &if\,x\neq0 \\\ -1,& if\,x=0 \end{matrix}\right.

It is evident that f is defined at all points of the real line.
Let c be a real number.

Case I:
If c≠0,then f(c)=sin c-cos c
limxcf(x)\lim_{x\rightarrow c}f(x)=limxc\lim_{x\rightarrow c} (sinx-cosx)=sin c-cos c
limxc\lim_{x\rightarrow c} f(x)=f(c)
Therefore,f is continuous at all points x,such that x≠0

Case II:
If c=0,then f(0)=-1 and limx0\lim_{x\rightarrow 0^-}f(x)=limx0\lim_{x\rightarrow 0}(sinx-cosx)=sin0-cos0=0-1=-1
limx0+\lim_{x\rightarrow 0^+}f(x)=limx0\lim_{x\rightarrow 0}(sinx-cosx)=sin0-cos0=0-1=-1
limx0\lim_{x\rightarrow 0^-} f(x)=f(0)=limx0+\lim_{x\rightarrow 0^+}f(x)=f(0)
Therefore,f is continuous at x=0
From the above observations, it can be concluded that f is continuous at every point of the real line.
Thus,f is a continuous function.