Solveeit Logo

Question

Question: Exact value of \(\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ \) is: (A) \(1\) (B...

Exact value of cos20+2sin2552sin65\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ is:
(A) 11
(B) 12\dfrac{1}{{\sqrt 2 }}
(C) 2\sqrt 2
(D) zero

Explanation

Solution

Firstly, find the value of 2sin2552{\sin ^2}55^\circ using the formula 2sin2θ=1cos2θ2{\sin ^2}\theta = 1 - \cos 2\theta and then break the sin65\sin 65^\circ into sin(45+20)\sin \left( {45 + 20} \right) to expand it using the formula sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B.

Complete step-by-step answer:
Given, cos20+2sin2552sin65\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ
Using formula 2sin2θ=1cos2θ2{\sin ^2}\theta = 1 - \cos 2\theta to find the value of 2sin2552{\sin ^2}55^\circ ,
\Rightarrow cos20+[1cos(2×55)]2sin65\cos 20^\circ + \left[ {1 - \cos \left( {2 \times 55^\circ } \right)} \right] - \sqrt 2 \sin 65^\circ
\Rightarrow cos20+1cos1102sin65\cos 20^\circ + 1 - \cos 110^\circ - \sqrt 2 \sin 65^\circ
\Rightarrow cos20+1cos(90+20)2sin65\cos 20^\circ + 1 - \cos \left( {90 + 20} \right) - \sqrt 2 \sin 65^\circ
\Rightarrow cos20+1(sin20)2sin65\cos 20^\circ + 1 - \left( { - \sin 20^\circ } \right) - \sqrt 2 \sin 65^\circ [cos(90+θ)=sinθ]\left[ {\because \cos \left( {90 + \theta } \right) = - \sin \theta } \right]
\Rightarrow cos20+1+sin202sin65\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \sin 65^\circ
\Rightarrow cos20+1+sin202sin(45+20)\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \sin \left( {45 + 20} \right) (65=45+20)\left( {\because 65 = 45 + 20} \right)
Using sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B to find the value of sin(45+20)\sin \left( {45 + 20} \right),
\Rightarrow cos20+1+sin202(sin45cos20+cos45sin20)\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \left( {\sin 45^\circ \cos 20^\circ + \cos 45^\circ \sin 20^\circ } \right)
\Rightarrow cos20+1+sin202sin45cos202cos45sin20\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \sin 45^\circ \cos 20^\circ - \sqrt 2 \cos 45^\circ \sin 20^\circ
\Rightarrow cos20+1+sin202×12×cos202×12×sin20\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \times \dfrac{1}{{\sqrt 2 }} \times \cos 20^\circ - \sqrt 2 \times \dfrac{1}{{\sqrt 2 }} \times \sin 20^\circ (sin45=cos45=12)\left( {\because \sin 45^\circ = \cos 45^\circ = \dfrac{1}{{\sqrt 2 }}} \right)
\Rightarrow cos20+1+sin20cos20sin20\cos 20^\circ + 1 + \sin 20^\circ - \cos 20^\circ - \sin 20^\circ
\Rightarrow 11
Therefore, cos20+2sin2552sin65\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ =11

Hence, option (A) is the correct answer.

Note: An another approach to solve this question is described below:
Given, cos20+2sin2552sin65\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ
Using formula 2sin2θ=1cos2θ2{\sin ^2}\theta = 1 - \cos 2\theta to find the value of 2sin2552{\sin ^2}55^\circ ,
\Rightarrow cos20+[1cos(2×55)]2sin65\cos 20^\circ + \left[ {1 - \cos \left( {2 \times 55^\circ } \right)} \right] - \sqrt 2 \sin 65^\circ
\Rightarrow cos20+1cos1102sin65\cos 20^\circ + 1 - \cos 110^\circ - \sqrt 2 \sin 65^\circ
\Rightarrow cos20cos110+12sin65\cos 20^\circ - \cos 110^\circ + 1 - \sqrt 2 \sin 65^\circ
Using formula cosCcosD=2sin(C+D2)sin(DC2)\cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{D - C}}{2}} \right) to find the value of cos20cos110\cos 20^\circ - \cos 110^\circ ,
\Rightarrow [2sin(20+1102)sin(110202)]+12sin65\left[ {2\sin \left( {\dfrac{{20 + 110}}{2}} \right)\sin \left( {\dfrac{{110 - 20}}{2}} \right)} \right] + 1 - \sqrt 2 \sin 65^\circ
\Rightarrow 2sin65sin45+12sin652\sin 65^\circ \sin 45^\circ + 1 - \sqrt 2 \sin 65^\circ
\Rightarrow 2sin65×12+12sin652\sin 65^\circ \times \dfrac{1}{{\sqrt 2 }} + 1 - \sqrt 2 \sin 65^\circ (sin45=12)\left( {\because \sin 45^\circ = \dfrac{1}{{\sqrt 2 }}} \right)
\Rightarrow 2sin65+12sin65\sqrt 2 \sin 65^\circ + 1 - \sqrt 2 \sin 65^\circ
\Rightarrow 11
Therefore, cos20+2sin2552sin65\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ =11
Hence, option (A) is the correct answer.