Question
Question: Exact value of \(\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ \) is: (A) \(1\) (B...
Exact value of cos20∘+2sin255∘−2sin65∘ is:
(A) 1
(B) 21
(C) 2
(D) zero
Solution
Firstly, find the value of 2sin255∘ using the formula 2sin2θ=1−cos2θ and then break the sin65∘ into sin(45+20) to expand it using the formula sin(A+B)=sinAcosB+cosAsinB.
Complete step-by-step answer:
Given, cos20∘+2sin255∘−2sin65∘
Using formula 2sin2θ=1−cos2θ to find the value of 2sin255∘,
⇒ cos20∘+[1−cos(2×55∘)]−2sin65∘
⇒ cos20∘+1−cos110∘−2sin65∘
⇒ cos20∘+1−cos(90+20)−2sin65∘
⇒ cos20∘+1−(−sin20∘)−2sin65∘ [∵cos(90+θ)=−sinθ]
⇒ cos20∘+1+sin20∘−2sin65∘
⇒ cos20∘+1+sin20∘−2sin(45+20) (∵65=45+20)
Using sin(A+B)=sinAcosB+cosAsinB to find the value of sin(45+20),
⇒ cos20∘+1+sin20∘−2(sin45∘cos20∘+cos45∘sin20∘)
⇒ cos20∘+1+sin20∘−2sin45∘cos20∘−2cos45∘sin20∘
⇒ cos20∘+1+sin20∘−2×21×cos20∘−2×21×sin20∘ (∵sin45∘=cos45∘=21)
⇒ cos20∘+1+sin20∘−cos20∘−sin20∘
⇒ 1
Therefore, cos20∘+2sin255∘−2sin65∘=1
Hence, option (A) is the correct answer.
Note: An another approach to solve this question is described below:
Given, cos20∘+2sin255∘−2sin65∘
Using formula 2sin2θ=1−cos2θ to find the value of 2sin255∘,
⇒ cos20∘+[1−cos(2×55∘)]−2sin65∘
⇒ cos20∘+1−cos110∘−2sin65∘
⇒ cos20∘−cos110∘+1−2sin65∘
Using formula cosC−cosD=2sin(2C+D)sin(2D−C) to find the value of cos20∘−cos110∘,
⇒ [2sin(220+110)sin(2110−20)]+1−2sin65∘
⇒ 2sin65∘sin45∘+1−2sin65∘
⇒ 2sin65∘×21+1−2sin65∘ (∵sin45∘=21)
⇒ 2sin65∘+1−2sin65∘
⇒ 1
Therefore, cos20∘+2sin255∘−2sin65∘=1
Hence, option (A) is the correct answer.