Solveeit Logo

Question

Question: Evaluate $\lim_{x\to 0}\left( \frac{1-\sqrt[3]{x^2+1}}{x^2} \right)$...

Evaluate limx0(1x2+13x2)\lim_{x\to 0}\left( \frac{1-\sqrt[3]{x^2+1}}{x^2} \right)

Answer

The limit evaluates to 13-\frac{1}{3}.

Explanation

Solution

The limit is of the indeterminate form 00\frac{0}{0}. We used algebraic manipulation involving the difference of cubes identity a3b3=(ab)(a2+ab+b2)a^3-b^3=(a-b)(a^2+ab+b^2) to rationalize the numerator. By setting a=1a=1 and b=(x2+1)1/3b=(x^2+1)^{1/3}, we multiplied the numerator and denominator by a2+ab+b2=1+(x2+1)1/3+(x2+1)2/3a^2+ab+b^2 = 1+(x^2+1)^{1/3}+(x^2+1)^{2/3}. This transformed the numerator into a3b3=1(x2+1)=x2a^3-b^3 = 1-(x^2+1) = -x^2. After canceling x2x^2 from the numerator and denominator (for x0x \neq 0), the expression simplified to 11+(x2+1)1/3+(x2+1)2/3\frac{-1}{1+(x^2+1)^{1/3}+(x^2+1)^{2/3}}. Evaluating the limit as x0x \to 0 by direct substitution gives 11+1+1=13\frac{-1}{1+1+1} = -\frac{1}{3}.

Alternatively, L'Hopital's Rule could be applied.