Solveeit Logo

Question

Question: Find the vector equation of the line passing through the point having position vector $2\hat{i} + \h...

Find the vector equation of the line passing through the point having position vector 2i^+j^3k^2\hat{i} + \hat{j} - 3\hat{k} and perpendicular to vectors i^+j^+k^\hat{i} + \hat{j} + \hat{k} and i^+2j^k^\hat{i} + 2\hat{j} - \hat{k}.

Answer

r=(2i^+j^3k^)+t(3i^+2j^+k^),tR\vec{r} = (2\hat{i} + \hat{j} - 3\hat{k}) + t(-3\hat{i} + 2\hat{j} + \hat{k}), \quad t \in \mathbb{R}

Explanation

Solution

To find the vector equation of the line:

  1. Find the Direction Vector:

    The line is perpendicular to both a=i^+j^+k^\vec{a} = \hat{i} + \hat{j} + \hat{k} and b=i^+2j^k^\vec{b} = \hat{i} + 2\hat{j} - \hat{k}. The direction vector d\vec{d} is given by the cross product:

    d=a×b=i^j^k^111121\vec{d} = \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 2 & -1 \end{vmatrix}

    Compute its components:

    • dx=(1)(1)(1)(2)=12=3d_x = (1)(-1) - (1)(2) = -1 - 2 = -3
    • dy=[(1)(1)(1)(1)]=(11)=2d_y = -\Big[(1)(-1) - (1)(1)\Big] = -(-1 - 1)= 2
    • dz=(1)(2)(1)(1)=21=1d_z = (1)(2) - (1)(1) = 2 - 1 = 1

    Thus, d=3i^+2j^+k^\vec{d} = -3\hat{i} + 2\hat{j} + \hat{k}.

  2. Write the Vector Equation of the Line:

    The line passes through the point with position vector r0=2i^+j^3k^\vec{r_0} = 2\hat{i} + \hat{j} - 3\hat{k}, and has direction vector d\vec{d}. Therefore, the vector equation is:

    r=r0+td=(2i^+j^3k^)+t(3i^+2j^+k^),tR\vec{r} = \vec{r_0} + t\,\vec{d} = (2\hat{i} + \hat{j} - 3\hat{k}) + t(-3\hat{i} + 2\hat{j} + \hat{k}), \quad t \in \mathbb{R}