Solveeit Logo

Question

Question: Find the angle between the line $\overline{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} + \...

Find the angle between the line r=(i^+2j^+k^)+λ(i^+j^+k^)\overline{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} + \hat{j} + \hat{k}) and the plane r.(2i^j^+k^)=8\overline{r}.(2\hat{i} - \hat{j} + \hat{k}) = 8

Answer

α=sin1(23)\alpha = \sin^{-1}\left(\frac{\sqrt{2}}{3}\right)

Explanation

Solution

  1. The given line has direction vector

    d=1,1,1.\vec{d} = \langle 1, 1, 1 \rangle.
  2. The given plane has normal vector

    n=2,1,1.\vec{n} = \langle 2, -1, 1 \rangle.
  3. The angle θ\theta between the direction vector and the normal is given by

    cosθ=dndn.\cos\theta = \frac{\vec{d}\cdot\vec{n}}{|\vec{d}||\vec{n}|}.

    Compute:

    dn=(1)(2)+(1)(1)+(1)(1)=21+1=2,\vec{d}\cdot\vec{n} = (1)(2) + (1)(-1) + (1)(1) = 2-1+1 = 2, d=12+12+12=3,|\vec{d}| = \sqrt{1^2+1^2+1^2} = \sqrt{3}, n=22+(1)2+12=4+1+1=6.|\vec{n}| = \sqrt{2^2+(-1)^2+1^2} = \sqrt{4+1+1} = \sqrt{6}.

    So,

    cosθ=236=218=232=23.\cos\theta = \frac{2}{\sqrt{3}\sqrt{6}} = \frac{2}{\sqrt{18}} = \frac{2}{3\sqrt{2}} = \frac{\sqrt{2}}{3}.
  4. The angle between the line and the plane, α\alpha, is the complement of θ\theta (since the normal is perpendicular to the plane):

    α=90θ.\alpha = 90^\circ - \theta.

    Alternatively, using trigonometric identity:

    sinα=cosθ=23.\sin\alpha = \cos\theta = \frac{\sqrt{2}}{3}.

    Thus,

    α=sin1(23).\alpha = \sin^{-1}\left(\frac{\sqrt{2}}{3}\right).