Solveeit Logo

Question

Question: Let $f:N\rightarrow R$ such that $\sum_{r=1}^{n} rf(r) = n(n+1)f(n) \forall n>1$ If $f(1)=1$ find V...

Let f:NRf:N\rightarrow R such that r=1nrf(r)=n(n+1)f(n)n>1\sum_{r=1}^{n} rf(r) = n(n+1)f(n) \forall n>1

If f(1)=1f(1)=1 find Value of f(1012)=f(1012)=

Answer

The value of f(1012)f(1012) is 12024\frac{1}{2024}.

Explanation

Solution

Let Sn=r=1nrf(r)S_n = \sum_{r=1}^{n} rf(r). The given relation is Sn=n(n+1)f(n)S_n = n(n+1)f(n) for n>1n > 1. We also know that Sn=Sn1+nf(n)S_n = S_{n-1} + nf(n) for n>1n > 1.

For n>2n > 2, we can substitute the given relation into Sn=Sn1+nf(n)S_n = S_{n-1} + nf(n): n(n+1)f(n)=(n1)nf(n1)+nf(n)n(n+1)f(n) = (n-1)n f(n-1) + nf(n)

Dividing by nn (since n>2n > 2, n0n \neq 0): (n+1)f(n)=(n1)f(n1)+f(n)(n+1)f(n) = (n-1)f(n-1) + f(n) nf(n)=(n1)f(n1)nf(n) = (n-1)f(n-1) This gives the recurrence relation f(n)=n1nf(n1)f(n) = \frac{n-1}{n}f(n-1) for n3n \geq 3.

To find f(2)f(2), we use the original relation for n=2n=2: S2=r=12rf(r)=1f(1)+2f(2)S_2 = \sum_{r=1}^{2} rf(r) = 1 \cdot f(1) + 2 \cdot f(2). The given relation states S2=2(2+1)f(2)=6f(2)S_2 = 2(2+1)f(2) = 6f(2). So, f(1)+2f(2)=6f(2)f(1) + 2f(2) = 6f(2). Given f(1)=1f(1)=1, we have 1+2f(2)=6f(2)1 + 2f(2) = 6f(2), which simplifies to 1=4f(2)1 = 4f(2), so f(2)=14f(2) = \frac{1}{4}.

Now we solve the recurrence relation f(n)=n1nf(n1)f(n) = \frac{n-1}{n}f(n-1) for n3n \geq 3: f(n)=n1nf(n1)f(n) = \frac{n-1}{n} \cdot f(n-1) f(n)=n1nn2n1f(n2)f(n) = \frac{n-1}{n} \cdot \frac{n-2}{n-1} \cdot f(n-2) f(n)=n1nn2n1n3n223f(2)f(n) = \frac{n-1}{n} \cdot \frac{n-2}{n-1} \cdot \frac{n-3}{n-2} \cdots \frac{2}{3} f(2)

This is a telescoping product, which simplifies to: f(n)=2nf(2)f(n) = \frac{2}{n} f(2) for n3n \geq 3.

Substitute the value of f(2)=14f(2) = \frac{1}{4}: f(n)=2n14=12nf(n) = \frac{2}{n} \cdot \frac{1}{4} = \frac{1}{2n} for n3n \geq 3.

Let's check if this formula holds for n=2n=2: f(2)=122=14f(2) = \frac{1}{2 \cdot 2} = \frac{1}{4}, which matches our calculated value. Therefore, the function can be defined as: f(1)=1f(1) = 1 f(n)=12nf(n) = \frac{1}{2n} for n2n \geq 2.

We need to find f(1012)f(1012). Since 101221012 \geq 2, we use the formula f(n)=12nf(n) = \frac{1}{2n}: f(1012)=121012=12024f(1012) = \frac{1}{2 \cdot 1012} = \frac{1}{2024}.