Question
Question: Ex① $f(x) = \frac{\pi}{9} - \frac{Sin6x + 8Sin12x}{Cos6x + Cos12x} = (kn(x)). Cos3x$ $x \neq \frac{\...
Ex① f(x)=9π−Cos6x+Cos12xSin6x+8Sin12x=(kn(x)).Cos3x x=18π,6π,2π,… x=9π,3π,π,…

kn(x) = \frac{1}{Cos3x} \left( \frac{\pi}{9} - \frac{Sin6x + 8Sin12x}{Cos6x + Cos12x} \right)
kn(x) = \frac{\pi}{9Cos3x} - \frac{Sin3x(32Cos^23x - 15)}{Cos9xCos3x}
kn(x) = \frac{\pi}{9} - \frac{Sin3x(32Cos^23x - 15)}{Cos9xCos3x}
kn(x) = \frac{\pi}{9} \cdot Cos3x - \frac{Sin6x + 8Sin12x}{Cos6x + Cos12x}
kn(x) = \frac{1}{Cos3x} \left( \frac{\pi}{9} - \frac{Sin6x + 8Sin12x}{Cos6x + Cos12x} \right)
Solution
The problem asks to express kn(x) given the equation f(x)=9π−Cos6x+Cos12xSin6x+8Sin12x=kn(x)⋅Cos3x.
To find kn(x), we can rearrange the given equation: kn(x)=Cos3xf(x) Substituting the expression for f(x): kn(x)=Cos3x1(9π−Cos6x+Cos12xSin6x+8Sin12x)
This is the direct algebraic solution for kn(x).
Further simplification of the fraction Cos6x+Cos12xSin6x+8Sin12x can be performed: Using sum-to-product for the denominator: Cos6x+Cos12x=2Cos(26x+12x)Cos(26x−12x)=2Cos(9x)Cos(−3x)=2Cos(9x)Cos(3x).
For the numerator, using double angle identities: Sin6x=2Sin3xCos3x Sin12x=2Sin6xCos6x Sin6x+8Sin12x=Sin6x+8(2Sin6xCos6x)=Sin6x(1+16Cos6x) Substitute Sin6x=2Sin3xCos3x: Numerator = 2Sin3xCos3x(1+16Cos6x)
The fraction becomes: 2Cos9xCos3x2Sin3xCos3x(1+16Cos6x) Assuming Cos3x=0, we can cancel 2Cos3x: Cos9xSin3x(1+16Cos6x) Using Cos6x=2Cos23x−1: 1+16Cos6x=1+16(2Cos23x−1)=1+32Cos23x−16=32Cos23x−15. So the fraction simplifies to Cos9xSin3x(32Cos23x−15).
Substituting this back into the expression for kn(x): kn(x)=Cos3x1(9π−Cos9xSin3x(32Cos23x−15)) kn(x)=9Cos3xπ−Cos9xCos3xSin3x(32Cos23x−15)
Both forms are valid representations of kn(x). The first option is the most direct answer derived from rearranging the equation. The second option is the result after simplifying the trigonometric fraction. The question asks for the value of kn(x), and the first option is the most direct and unsimplified representation.
The constraints x=(2 and 8x=(2 in the original question are incomplete. Assuming they are meant to ensure the denominators are non-zero, typical constraints for this expression would be Cos6x+Cos12x=0 and Cos3x=0. This implies 2Cos9xCos3x=0, so Cos9x=0 and Cos3x=0. 3x=2π+nπ⟹x=6π+3nπ 9x=2π+nπ⟹x=18π+9nπ These correspond to the corrected constraints in the content field.