Solveeit Logo

Question

Question: Ex① $f(x) = \frac{\pi}{9} - \frac{Sin6x + 8Sin12x}{Cos6x + Cos12x} = (kn(x)). Cos3x$ $x \neq \frac{\...

Ex① f(x)=π9Sin6x+8Sin12xCos6x+Cos12x=(kn(x)).Cos3xf(x) = \frac{\pi}{9} - \frac{Sin6x + 8Sin12x}{Cos6x + Cos12x} = (kn(x)). Cos3x xπ18,π6,π2,x \neq \frac{\pi}{18}, \frac{\pi}{6}, \frac{\pi}{2}, \dots xπ9,π3,π,x \neq \frac{\pi}{9}, \frac{\pi}{3}, \pi, \dots

A

kn(x) = \frac{1}{Cos3x} \left( \frac{\pi}{9} - \frac{Sin6x + 8Sin12x}{Cos6x + Cos12x} \right)

B

kn(x) = \frac{\pi}{9Cos3x} - \frac{Sin3x(32Cos^23x - 15)}{Cos9xCos3x}

C

kn(x) = \frac{\pi}{9} - \frac{Sin3x(32Cos^23x - 15)}{Cos9xCos3x}

D

kn(x) = \frac{\pi}{9} \cdot Cos3x - \frac{Sin6x + 8Sin12x}{Cos6x + Cos12x}

Answer

kn(x) = \frac{1}{Cos3x} \left( \frac{\pi}{9} - \frac{Sin6x + 8Sin12x}{Cos6x + Cos12x} \right)

Explanation

Solution

The problem asks to express kn(x)kn(x) given the equation f(x)=π9Sin6x+8Sin12xCos6x+Cos12x=kn(x)Cos3xf(x) = \frac{\pi}{9} - \frac{Sin6x + 8Sin12x}{Cos6x + Cos12x} = kn(x) \cdot Cos3x.

To find kn(x)kn(x), we can rearrange the given equation: kn(x)=f(x)Cos3xkn(x) = \frac{f(x)}{Cos3x} Substituting the expression for f(x)f(x): kn(x)=1Cos3x(π9Sin6x+8Sin12xCos6x+Cos12x)kn(x) = \frac{1}{Cos3x} \left( \frac{\pi}{9} - \frac{Sin6x + 8Sin12x}{Cos6x + Cos12x} \right)

This is the direct algebraic solution for kn(x)kn(x).

Further simplification of the fraction Sin6x+8Sin12xCos6x+Cos12x\frac{Sin6x + 8Sin12x}{Cos6x + Cos12x} can be performed: Using sum-to-product for the denominator: Cos6x+Cos12x=2Cos(6x+12x2)Cos(6x12x2)=2Cos(9x)Cos(3x)=2Cos(9x)Cos(3x)Cos6x + Cos12x = 2Cos\left(\frac{6x+12x}{2}\right)Cos\left(\frac{6x-12x}{2}\right) = 2Cos(9x)Cos(-3x) = 2Cos(9x)Cos(3x).

For the numerator, using double angle identities: Sin6x=2Sin3xCos3xSin6x = 2Sin3xCos3x Sin12x=2Sin6xCos6xSin12x = 2Sin6xCos6x Sin6x+8Sin12x=Sin6x+8(2Sin6xCos6x)=Sin6x(1+16Cos6x)Sin6x + 8Sin12x = Sin6x + 8(2Sin6xCos6x) = Sin6x(1 + 16Cos6x) Substitute Sin6x=2Sin3xCos3xSin6x = 2Sin3xCos3x: Numerator = 2Sin3xCos3x(1+16Cos6x)2Sin3xCos3x(1 + 16Cos6x)

The fraction becomes: 2Sin3xCos3x(1+16Cos6x)2Cos9xCos3x\frac{2Sin3xCos3x(1 + 16Cos6x)}{2Cos9xCos3x} Assuming Cos3x0Cos3x \neq 0, we can cancel 2Cos3x2Cos3x: Sin3x(1+16Cos6x)Cos9x\frac{Sin3x(1 + 16Cos6x)}{Cos9x} Using Cos6x=2Cos23x1Cos6x = 2Cos^23x - 1: 1+16Cos6x=1+16(2Cos23x1)=1+32Cos23x16=32Cos23x151 + 16Cos6x = 1 + 16(2Cos^23x - 1) = 1 + 32Cos^23x - 16 = 32Cos^23x - 15. So the fraction simplifies to Sin3x(32Cos23x15)Cos9x\frac{Sin3x(32Cos^23x - 15)}{Cos9x}.

Substituting this back into the expression for kn(x)kn(x): kn(x)=1Cos3x(π9Sin3x(32Cos23x15)Cos9x)kn(x) = \frac{1}{Cos3x} \left( \frac{\pi}{9} - \frac{Sin3x(32Cos^23x - 15)}{Cos9x} \right) kn(x)=π9Cos3xSin3x(32Cos23x15)Cos9xCos3xkn(x) = \frac{\pi}{9Cos3x} - \frac{Sin3x(32Cos^23x - 15)}{Cos9xCos3x}

Both forms are valid representations of kn(x)kn(x). The first option is the most direct answer derived from rearranging the equation. The second option is the result after simplifying the trigonometric fraction. The question asks for the value of kn(x)kn(x), and the first option is the most direct and unsimplified representation.

The constraints x(2x \neq (2 and 8x(28x \neq (2 in the original question are incomplete. Assuming they are meant to ensure the denominators are non-zero, typical constraints for this expression would be Cos6x+Cos12x0Cos6x + Cos12x \neq 0 and Cos3x0Cos3x \neq 0. This implies 2Cos9xCos3x02Cos9xCos3x \neq 0, so Cos9x0Cos9x \neq 0 and Cos3x0Cos3x \neq 0. 3xπ2+nπ    xπ6+nπ33x \neq \frac{\pi}{2} + n\pi \implies x \neq \frac{\pi}{6} + \frac{n\pi}{3} 9xπ2+nπ    xπ18+nπ99x \neq \frac{\pi}{2} + n\pi \implies x \neq \frac{\pi}{18} + \frac{n\pi}{9} These correspond to the corrected constraints in the content field.