Question
Question: EX. Find the inverse of the matrix $A$, using elementary row operations, where $A = \begin{bmatrix} ...
EX. Find the inverse of the matrix A, using elementary row operations, where A=1−1023−2−201.

312212625
Solution
To find the inverse of the matrix A=1−1023−2−201 using elementary row operations, we augment the matrix A with the identity matrix I of the same size, forming the augmented matrix [A∣I].
[A∣I]=1−1023−2−201∣∣∣100010001
Our goal is to transform the left side of the augmented matrix into the identity matrix by applying elementary row operations to the entire augmented matrix. The matrix on the right side will then be the inverse of A.
Step 1: Make the element in the first row, first column (a11) equal to 1. It is already 1.
Step 2: Make the elements below a11 zero. Apply R2→R2+R1: 1−1+1023+2−2−20+(−2)1∣∣∣10+1001+0000+01=10025−2−2−21∣∣∣110010001
Step 3: Make the element in the second row, second column (a22) equal to 1. Apply R2→51R2: 10021−2−2−2/51∣∣∣11/5001/50001
Step 4: Make the elements above and below a22 zero. Apply R1→R1−2R2: 1−2(0)002−2(1)1−2−2−2(−2/5)−2/51∣∣∣1−2(1/5)1/500−2(1/5)1/500−2(0)01=10001−2−6/5−2/51∣∣∣3/51/50−2/51/50001 Apply R3→R3+2R2: 100+2(0)01−2+2(1)−6/5−2/51+2(−2/5)∣∣∣3/51/50+2(1/5)−2/51/50+2(1/5)001+2(0)=100010−6/5−2/51/5∣∣∣3/51/52/5−2/51/52/5001
Step 5: Make the element in the third row, third column (a33) equal to 1. Apply R3→5R3: 100010−6/5−2/51∣∣∣3/51/52−2/51/52005
Step 6: Make the elements above a33 zero. Apply R1→R1+56R3: 1+56(0)000+56(0)10−6/5+56(1)−2/51∣∣∣3/5+56(2)1/52−2/5+56(2)1/520+56(5)05=1000100−2/51∣∣∣15/51/5210/51/52605=1000100−2/51∣∣∣31/5221/52605 Apply R2→R2+52R3: 10+52(0)001+52(0)00−2/5+52(1)1∣∣∣31/5+52(2)221/5+52(2)260+52(5)5=100010001∣∣∣35/5225/52625=100010001∣∣∣312212625
The left side is now the identity matrix. The matrix on the right side is the inverse of A. A−1=312212625.
The sequence of operations used is: R2→R2+R1, R2→51R2, R1→R1−2R2, R3→R3+2R2, R3→5R3, R1→R1+56R3, R2→R2+52R3.
The final matrix on the right side is the inverse matrix A−1.