Solveeit Logo

Question

Question: Figure shows a coordinate system in which 8 uniform cubes of side a are placed as shown. If masses o...

Figure shows a coordinate system in which 8 uniform cubes of side a are placed as shown. If masses of cubes 1, 2, 3 & 4 is m of each & 2m for remaining cubes, find location of centre of mass of this system.

Answer

The centre of mass of the system is at

(3a2,4a3).\left(\frac{3a}{2},\frac{4a}{3}\right).
Explanation

Solution

Solution:

  1. Assign centers:

    • Let the bottom row have cubes 1, 2, 3, 4 with centers at

      Cube 1: (a2,a2)\left(\frac{a}{2},\frac{a}{2}\right)

      Cube 2: (3a2,a2)\left(\frac{3a}{2},\frac{a}{2}\right)

      Cube 3: (5a2,a2)\left(\frac{5a}{2},\frac{a}{2}\right)

      Cube 4: (7a2,a2)\left(\frac{7a}{2},\frac{a}{2}\right)

    • The cubes on top:

      Cube 5 on cube 1: (a2,3a2)\left(\frac{a}{2},\frac{3a}{2}\right)

      Cube 6 on cube 2: (3a2,3a2)\left(\frac{3a}{2},\frac{3a}{2}\right)

      Cube 7 on cube 3: (5a2,3a2)\left(\frac{5a}{2},\frac{3a}{2}\right)

      Cube 8 on cube 5: (a2,5a2)\left(\frac{a}{2},\frac{5a}{2}\right)

  2. Masses:

    • Cubes 1, 2, 3, 4 each have mass mm.
    • Cubes 5, 6, 7, 8 each have mass 2m2m.
  3. Total mass:

    M=4m+4(2m)=12m.M = 4m + 4(2m) = 12m.
  4. Calculate xx-coordinate of centre of mass:

    • Bottom row:

      xbottom=a2+3a2+5a2+7a2=16a2=8a.\sum x_{\text{bottom}} = \frac{a}{2} + \frac{3a}{2} + \frac{5a}{2} + \frac{7a}{2} = \frac{16a}{2} = 8a.
    • Top cubes:

      xtop=a2+3a2+5a2+a2=10a2=5a.\sum x_{\text{top}} = \frac{a}{2} + \frac{3a}{2} + \frac{5a}{2} + \frac{a}{2} = \frac{10a}{2} = 5a.
    • Weighted sum:

      xcm=m(8a)+2m(5a)12m=8ma+10ma12m=18a12=3a2.x_{cm} = \frac{m(8a) + 2m(5a)}{12m} = \frac{8ma + 10ma}{12m} = \frac{18a}{12} = \frac{3a}{2}.
  5. Calculate yy-coordinate of centre of mass:

    • Bottom row contribution (each at a2\frac{a}{2})

      Bottom moment =4m(a2)=2ma.\text{Bottom moment } = 4m\left(\frac{a}{2}\right) = 2ma.
    • Top cubes:

      Cube 5,6,7 each at y=3a2y=\frac{3a}{2} and Cube 8 at y=5a2y=\frac{5a}{2}

      Top moment =2m(3a2+3a2+3a2+5a2)=2m(14a2)=14ma.\text{Top moment } = 2m\left(\frac{3a}{2}+\frac{3a}{2}+\frac{3a}{2}+\frac{5a}{2}\right) = 2m\left(\frac{14a}{2}\right) = 14ma.
    • Total moment:

      ycm=2ma+14ma12m=16a12=4a3.y_{cm} = \frac{2ma+14ma}{12m} = \frac{16a}{12} = \frac{4a}{3}.

Summary:

Assign cube centers using geometry. Compute weighted average:

xcm=mixiM=18am12m=3a2x_{cm} = \frac{\sum m_i x_i}{M}=\frac{18a m}{12m}=\frac{3a}{2}.

ycm=miyiM=16am12m=4a3y_{cm} = \frac{\sum m_i y_i}{M}=\frac{16a m}{12m}=\frac{4a}{3}.