Solveeit Logo

Question

Question: Ex. 8) If $\sin A + \sin B = x$ and $\cos A + \cos B = y$ then show that $\sin (A+B) = \frac{2xy}{x^...

Ex. 8) If sinA+sinB=x\sin A + \sin B = x and cosA+cosB=y\cos A + \cos B = y then show that sin(A+B)=2xyx2+y2\sin (A+B) = \frac{2xy}{x^2+y^2}

Answer

sin(A+B)=2xyx2+y2\sin (A+B) = \frac{2xy}{x^2+y^2}

Explanation

Solution

Solution:

Express the sums using the sum‐to‐product formulas:

sinA+sinB=2sinA+B2cosAB2=x,cosA+cosB=2cosA+B2cosAB2=y.\sin A+\sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2} = x, \quad \cos A+\cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2} = y.

Then,

x2+y2=4cos2AB2(sin2A+B2+cos2A+B2)=4cos2AB2.x^2+y^2 = 4\cos^2\frac{A-B}{2}\Bigl(\sin^2\frac{A+B}{2}+\cos^2\frac{A+B}{2}\Bigr)=4\cos^2\frac{A-B}{2}.

Next, multiply xx and yy:

xy=(2sinA+B2cosAB2)(2cosA+B2cosAB2)=4sinA+B2cosA+B2cos2AB2.xy = \Bigl(2\sin\frac{A+B}{2}\cos\frac{A-B}{2}\Bigr)\Bigl(2\cos\frac{A+B}{2}\cos\frac{A-B}{2}\Bigr)=4\sin\frac{A+B}{2}\cos\frac{A+B}{2}\cos^2\frac{A-B}{2}.

Recall the double-angle formula:

sin(A+B)=2sinA+B2cosA+B2.\sin(A+B)=2\sin\frac{A+B}{2}\cos\frac{A+B}{2}.

Thus,

xy=2sin(A+B)cos2AB2.xy = 2\sin(A+B)\cos^2\frac{A-B}{2}.

Now substitute for cos2AB2\cos^2\frac{A-B}{2} from the expression for x2+y2x^2+y^2:

cos2AB2=x2+y24.\cos^2\frac{A-B}{2} = \frac{x^2+y^2}{4}.

So,

xy=2sin(A+B)x2+y24=12sin(A+B)(x2+y2).xy = 2\sin(A+B) \cdot \frac{x^2+y^2}{4} = \frac{1}{2}\sin(A+B)(x^2+y^2).

Finally, solving for sin(A+B)\sin(A+B):

sin(A+B)=2xyx2+y2.\sin(A+B) = \frac{2xy}{x^2+y^2}.

Core Explanation:

  1. Write sums using sum‐to‐product formulas.
  2. Compute x2+y2=4cos2AB2x^2+y^2=4\cos^2\frac{A-B}{2}.
  3. Multiply xx and yy and express in terms of sin(A+B)\sin(A+B).
  4. Substitute and simplify to obtain the result.