Solveeit Logo

Question

Question: Ex. 7. Using vector method, find the incenter of the triangle whose vertices are A(0, 3, 0), B(0, 0,...

Ex. 7. Using vector method, find the incenter of the triangle whose vertices are A(0, 3, 0), B(0, 0, 4) and C(0, 3, 4).

Answer

(0, 2, 3)

Explanation

Solution

Solution:

  1. Compute the side lengths:
     • Length BC (opposite A):
      BC=(00)2+(30)2+(44)2=3BC = \sqrt{(0-0)^2+(3-0)^2+(4-4)^2} = 3
     • Length AC (opposite B):
      AC=(00)2+(33)2+(40)2=4AC = \sqrt{(0-0)^2+(3-3)^2+(4-0)^2} = 4
     • Length AB (opposite C):
      AB=(00)2+(30)2+(04)2=5AB = \sqrt{(0-0)^2+(3-0)^2+(0-4)^2} = 5

  2. Use the formula for the incenter with vertices AA, BB, CC and side lengths aa, bb, cc (opposite to AA, BB, CC respectively):
        I=aA+bB+cCa+b+c=3(0,3,0)+4(0,0,4)+5(0,3,4)3+4+5     I = \frac{aA + bB + cC}{a+b+c} = \frac{3(0,3,0) + 4(0,0,4) + 5(0,3,4)}{3+4+5}   

  3. Evaluate the numerator:
      3(0,3,0)=(0,9,0)3(0,3,0) = (0,9,0)
      4(0,0,4)=(0,0,16)4(0,0,4) = (0,0,16)
      5(0,3,4)=(0,15,20)5(0,3,4) = (0,15,20)
      Sum: (0,9+15,0+16+20)=(0,24,36)(0,9+15,0+16+20) = (0,24,36)

  4. Divide by the perimeter 1212:
      I=(0,2412,3612)=(0,2,3)I = \left(0,\frac{24}{12},\frac{36}{12}\right) = (0, 2, 3)

Answer:
The incenter of the triangle is (0,2,3)(0, 2, 3).