Question
Question: Ex. 7. Using vector method, find the incenter of the triangle whose vertices are A(0, 3, 0), B(0, 0,...
Ex. 7. Using vector method, find the incenter of the triangle whose vertices are A(0, 3, 0), B(0, 0, 4) and C(0, 3, 4).
Answer
(0, 2, 3)
Explanation
Solution
Solution:
-
Compute the side lengths:
• Length BC (opposite A):
BC=(0−0)2+(3−0)2+(4−4)2=3
• Length AC (opposite B):
AC=(0−0)2+(3−3)2+(4−0)2=4
• Length AB (opposite C):
AB=(0−0)2+(3−0)2+(0−4)2=5 -
Use the formula for the incenter with vertices A, B, C and side lengths a, b, c (opposite to A, B, C respectively):
I=a+b+caA+bB+cC=3+4+53(0,3,0)+4(0,0,4)+5(0,3,4) -
Evaluate the numerator:
3(0,3,0)=(0,9,0)
4(0,0,4)=(0,0,16)
5(0,3,4)=(0,15,20)
Sum: (0,9+15,0+16+20)=(0,24,36) -
Divide by the perimeter 12:
I=(0,1224,1236)=(0,2,3)
Answer:
The incenter of the triangle is (0,2,3).