Solveeit Logo

Question

Question: Evaluate: $\lim_{x \to 0} \frac{21^x-7^x-3^x+1}{x \log(1+x)}$...

Evaluate: limx021x7x3x+1xlog(1+x)\lim_{x \to 0} \frac{21^x-7^x-3^x+1}{x \log(1+x)}

Answer

log7log3\log 7 \log 3

Explanation

Solution

The given limit is limx021x7x3x+1xlog(1+x)\lim_{x \to 0} \frac{21^x-7^x-3^x+1}{x \log(1+x)}.

First, we check the form of the limit as x0x \to 0: Numerator: 2107030+1=111+1=021^0 - 7^0 - 3^0 + 1 = 1 - 1 - 1 + 1 = 0. Denominator: 0log(1+0)=0log(1)=00=00 \cdot \log(1+0) = 0 \cdot \log(1) = 0 \cdot 0 = 0. This is a 00\frac{0}{0} indeterminate form, so we can use algebraic manipulation or L'Hopital's Rule. Algebraic manipulation using standard limits is often simpler.

Step 1: Factor the numerator.

The numerator is 21x7x3x+121^x - 7^x - 3^x + 1. We can write 21x21^x as (73)x=7x3x(7 \cdot 3)^x = 7^x 3^x. So, the numerator becomes 7x3x7x3x+17^x 3^x - 7^x - 3^x + 1. This expression is in the form abab+1ab - a - b + 1, which factors as (a1)(b1)(a-1)(b-1). Here, a=7xa = 7^x and b=3xb = 3^x. Therefore, 7x3x7x3x+1=(7x1)(3x1)7^x 3^x - 7^x - 3^x + 1 = (7^x - 1)(3^x - 1).

Step 2: Rewrite the limit expression using the factored numerator.

The limit becomes: limx0(7x1)(3x1)xlog(1+x)\lim_{x \to 0} \frac{(7^x - 1)(3^x - 1)}{x \log(1+x)}

Step 3: Separate the terms to match standard limits.

We know the following standard limits:

  1. limx0ax1x=loga\lim_{x \to 0} \frac{a^x - 1}{x} = \log a (where log\log denotes the natural logarithm, ln\ln)
  2. limx0log(1+x)x=1\lim_{x \to 0} \frac{\log(1+x)}{x} = 1

We can rewrite the expression as a product of terms that correspond to these standard limits: (7x1)(3x1)xlog(1+x)=7x1x3x1xxlog(1+x)\frac{(7^x - 1)(3^x - 1)}{x \log(1+x)} = \frac{7^x - 1}{x} \cdot \frac{3^x - 1}{x} \cdot \frac{x}{\log(1+x)}

Step 4: Apply the limits to each term.

limx07x1x=log7\lim_{x \to 0} \frac{7^x - 1}{x} = \log 7 limx03x1x=log3\lim_{x \to 0} \frac{3^x - 1}{x} = \log 3 limx0xlog(1+x)=1limx0log(1+x)x=11=1\lim_{x \to 0} \frac{x}{\log(1+x)} = \frac{1}{\lim_{x \to 0} \frac{\log(1+x)}{x}} = \frac{1}{1} = 1

Step 5: Multiply the results.

The overall limit is the product of these individual limits: (log7)(log3)1=log7log3(\log 7) \cdot (\log 3) \cdot 1 = \log 7 \log 3

The final answer is log7log3\boxed{\log 7 \log 3}.

Explanation of the solution:

The limit is of the 00\frac{0}{0} form. The numerator 21x7x3x+121^x-7^x-3^x+1 is factored as (7x1)(3x1)(7^x-1)(3^x-1). The expression is then rearranged as 7x1x3x1xxlog(1+x)\frac{7^x-1}{x} \cdot \frac{3^x-1}{x} \cdot \frac{x}{\log(1+x)}. Applying the standard limits limx0ax1x=loga\lim_{x \to 0} \frac{a^x-1}{x} = \log a and limx0log(1+x)x=1\lim_{x \to 0} \frac{\log(1+x)}{x} = 1, the limit evaluates to (log7)(log3)(1)=log7log3(\log 7)(\log 3)(1) = \log 7 \log 3.