Solveeit Logo

Question

Question: Evaluate: $\lim_{x \to 0} (\frac{21^x - 7^x - 3^x + 1}{x\log(1+x)})$...

Evaluate: limx0(21x7x3x+1xlog(1+x))\lim_{x \to 0} (\frac{21^x - 7^x - 3^x + 1}{x\log(1+x)})

Answer

log7log3\log 7 \log 3

Explanation

Solution

The limit is in 00\frac{0}{0} form. The numerator 21x7x3x+121^x - 7^x - 3^x + 1 is factored as (7x1)(3x1)(7^x - 1)(3^x - 1). The expression is then rewritten as a product of terms: (7x1x)(3x1x)(xlog(1+x))\left(\frac{7^x - 1}{x}\right) \cdot \left(\frac{3^x - 1}{x}\right) \cdot \left(\frac{x}{\log(1+x)}\right). Using standard limits limx0ax1x=loga\lim_{x \to 0} \frac{a^x - 1}{x} = \log a and limx0log(1+x)x=1\lim_{x \to 0} \frac{\log(1+x)}{x} = 1, the limit evaluates to (log7)(log3)1=log7log3(\log 7) \cdot (\log 3) \cdot 1 = \log 7 \log 3.