Question
Question: Evaluate: $\lim_{x\to 0}\left(\frac{e^{2x}+e^{-2x}-2}{x \sin x}\right)$...
Evaluate: limx→0(xsinxe2x+e−2x−2)

A
0
B
1
C
2
D
4
Answer
4
Explanation
Solution
The limit is of the form 00 when x=0.
Step 1: Simplify the numerator using an algebraic identity.
Notice that the numerator e2x+e−2x−2 resembles the expansion of (a−b)2. Let a=ex and b=e−x. Then (ex−e−x)2=e2x+e−2x−2.
The limit expression becomes:
x→0lim(xsinx(ex−e−x)2)Step 2: Utilize standard limits.
We know the following standard limits:
- limu→0usinu=1
- limu→0ueu−1=1
Let's evaluate limx→0xex−e−x:
x→0limxex−e−x=x→0lim(xex−1−xe−x−1)=1−(−1)=2Step 3: Rewrite the limit expression and evaluate.
We can rewrite the original limit expression:
x→0lim(xsinx(ex−e−x)2)=x→0limxsinx(xex−e−x)2=limx→0xsinx(limx→0xex−e−x)2=1(2)2=4The final answer is 4.