Solveeit Logo

Question

Question: Evaluate: $\lim_{x\to 0}\left(\frac{e^{2x}+e^{-2x}-2}{x \sin x}\right)$...

Evaluate: limx0(e2x+e2x2xsinx)\lim_{x\to 0}\left(\frac{e^{2x}+e^{-2x}-2}{x \sin x}\right)

A

0

B

1

C

2

D

4

Answer

4

Explanation

Solution

The limit is of the form 00\frac{0}{0} when x=0x=0.

Step 1: Simplify the numerator using an algebraic identity.

Notice that the numerator e2x+e2x2e^{2x}+e^{-2x}-2 resembles the expansion of (ab)2(a-b)^2. Let a=exa=e^x and b=exb=e^{-x}. Then (exex)2=e2x+e2x2(e^x - e^{-x})^2 = e^{2x} + e^{-2x} - 2.

The limit expression becomes:

limx0((exex)2xsinx)\lim_{x\to 0}\left(\frac{(e^x - e^{-x})^2}{x \sin x}\right)

Step 2: Utilize standard limits.

We know the following standard limits:

  1. limu0sinuu=1\lim_{u \to 0} \frac{\sin u}{u} = 1
  2. limu0eu1u=1\lim_{u \to 0} \frac{e^u - 1}{u} = 1

Let's evaluate limx0exexx\lim_{x \to 0} \frac{e^x - e^{-x}}{x}:

limx0exexx=limx0(ex1xex1x)=1(1)=2\lim_{x \to 0} \frac{e^x - e^{-x}}{x} = \lim_{x \to 0} \left( \frac{e^x - 1}{x} - \frac{e^{-x} - 1}{x} \right) = 1 - (-1) = 2

Step 3: Rewrite the limit expression and evaluate.

We can rewrite the original limit expression:

limx0((exex)2xsinx)=limx0((exexx)2sinxx)=(limx0exexx)2limx0sinxx=(2)21=4\lim_{x\to 0}\left(\frac{(e^x - e^{-x})^2}{x \sin x}\right) = \lim_{x\to 0}\left(\frac{\left(\frac{e^x - e^{-x}}{x}\right)^2}{\frac{\sin x}{x}}\right) = \frac{\left(\lim_{x\to 0}\frac{e^x - e^{-x}}{x}\right)^2}{\lim_{x\to 0}\frac{\sin x}{x}} = \frac{(2)^2}{1} = 4

The final answer is 4.