Solveeit Logo

Question

Question: Evaluate : $\lim_{x\to 0} \left[ \frac{\log 4 + \log(0.25+x)}{x} \right]$...

Evaluate : limx0[log4+log(0.25+x)x]\lim_{x\to 0} \left[ \frac{\log 4 + \log(0.25+x)}{x} \right]

Answer

4

Explanation

Solution

The problem asks to evaluate the limit: limx0[log4+log(0.25+x)x]\lim_{x\to 0} \left[ \frac{\log 4 + \log(0.25+x)}{x} \right]

We assume log\log denotes the natural logarithm (ln\ln), which is standard in calculus unless specified otherwise.

Step 1: Simplify the numerator using logarithm properties. The numerator is log4+log(0.25+x)\log 4 + \log(0.25+x). Using the logarithm property logA+logB=log(AB)\log A + \log B = \log (AB): log4+log(0.25+x)=log(4×(0.25+x))\log 4 + \log(0.25+x) = \log \left( 4 \times (0.25+x) \right) =log(4×14+4x)= \log \left( 4 \times \frac{1}{4} + 4x \right) =log(1+4x)= \log (1 + 4x)

Step 2: Rewrite the limit expression. Substitute the simplified numerator back into the limit: limx0[log(1+4x)x]\lim_{x\to 0} \left[ \frac{\log (1 + 4x)}{x} \right]

Step 3: Evaluate the limit. As x0x \to 0, the numerator log(1+4x)log(1)=0\log(1+4x) \to \log(1) = 0. As x0x \to 0, the denominator x0x \to 0. This is an indeterminate form of type 00\frac{0}{0}. We can use either the standard limit formula or L'Hopital's Rule.

Method 1: Using the Standard Limit Formula We know the standard limit formula: limy0log(1+y)y=1\lim_{y\to 0} \frac{\log (1+y)}{y} = 1. To apply this, we need the term in the denominator to match the argument of the logarithm. In our case, the argument is 4x4x. So, we multiply and divide the expression by 4: limx0[log(1+4x)x]=limx0[log(1+4x)4x×4]\lim_{x\to 0} \left[ \frac{\log (1 + 4x)}{x} \right] = \lim_{x\to 0} \left[ \frac{\log (1 + 4x)}{4x} \times 4 \right] Let y=4xy = 4x. As x0x \to 0, y0y \to 0. The limit becomes: 4×limy0log(1+y)y=4×1=44 \times \lim_{y\to 0} \frac{\log (1+y)}{y} = 4 \times 1 = 4

Method 2: Using L'Hopital's Rule Since the limit is of the 00\frac{0}{0} form, we can apply L'Hopital's Rule. Let f(x)=log(1+4x)f(x) = \log(1+4x) and g(x)=xg(x) = x. Find the derivatives of f(x)f(x) and g(x)g(x): f(x)=ddx(log(1+4x))=11+4x×ddx(1+4x)=41+4xf'(x) = \frac{d}{dx} (\log(1+4x)) = \frac{1}{1+4x} \times \frac{d}{dx}(1+4x) = \frac{4}{1+4x} g(x)=ddx(x)=1g'(x) = \frac{d}{dx} (x) = 1 Apply L'Hopital's Rule: limx0[f(x)g(x)]=limx0[41+4x1]\lim_{x\to 0} \left[ \frac{f'(x)}{g'(x)} \right] = \lim_{x\to 0} \left[ \frac{\frac{4}{1+4x}}{1} \right] =limx0[41+4x]= \lim_{x\to 0} \left[ \frac{4}{1+4x} \right] Now, substitute x=0x=0: =41+4(0)=41=4= \frac{4}{1+4(0)} = \frac{4}{1} = 4

Both methods yield the same result.

The expression is simplified using logarithm properties to log(1+4x)x\frac{\log(1+4x)}{x}. This is a standard limit form limy0log(1+y)y=1\lim_{y\to 0} \frac{\log(1+y)}{y}=1. By multiplying and dividing by 4, the limit is transformed to 4×lim4x0log(1+4x)4x4 \times \lim_{4x\to 0} \frac{\log(1+4x)}{4x}, which evaluates to 4×1=44 \times 1 = 4. Alternatively, L'Hopital's Rule can be applied to the 00\frac{0}{0} form, yielding the same result.