Solveeit Logo

Question

Question: Evaluate : $\lim_{x \to 0} \left[ 1 + \frac{5x}{6} \right]^{\frac{1}{x}}$...

Evaluate : limx0[1+5x6]1x\lim_{x \to 0} \left[ 1 + \frac{5x}{6} \right]^{\frac{1}{x}}

Answer

e5/6e^{5/6}

Explanation

Solution

The limit is of the form limx0[1+5x6]1x\lim_{x \to 0} \left[ 1 + \frac{5x}{6} \right]^{\frac{1}{x}}.

This is an indeterminate form of type 11^\infty.

Using the standard limit formula limx0(1+ax)1/x=ea\lim_{x \to 0} (1 + ax)^{1/x} = e^a, we compare the given limit with this form.

Here, a=56a = \frac{5}{6}.

Therefore, the value of the limit is e5/6e^{5/6}.