Solveeit Logo

Question

Mathematics Question on Bayes' Theorem

Events E1E_1 and E2E_2 from a partition of the sample space S. A is any event such that P(E1)=P(E2)=12,P(E2/A)=12P(E_1) = P(E_2) = \frac{1}{2}, P(E_2/A) = \frac{1}{2} and P(A/E2)=23P(A/E_2)=\frac{2}{3}, then P(E1/A)P(E_1/A) is

A

12\frac{1}{2}

B

23\frac{2}{3}

C

1

D

14\frac{1}{4}

Answer

12\frac{1}{2}

Explanation

Solution

Let P(AE1)=xP\left(A \mid E_{1}\right)=x
By Bayes' theorem,
P(E2A)=P(E2)P(AE2)P(E1)P(AE1)+P(E2)P(AE2)P\left(E_{2} |A\right)=\frac{P\left(E_{2}\right) P\left(A |E_{2}\right)}{P\left(E_{1}\right) P\left(A |E_{1}\right)+P\left(E_{2}\right) P\left(A |E_{2}\right)}
12=(12)(23)(12)x+(12)(23)\Rightarrow \frac{1}{2}=\frac{\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)}{\left(\frac{1}{2}\right) x+\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)}
x=23\Rightarrow x=\frac{2}{3}
P(E1A)=P(E1)P(AE1)P(E1)P(AE1)+P(E2)P(AE2)\therefore P\left(E_{1} |A\right)=\frac{P\left(E_{1}\right) P\left(A |E_{1}\right)}{P\left(E_{1}\right) P\left(A | E_{1}\right)+P\left(E_{2}\right) P\left(A | E_{2}\right)}
=(12)(23)(12)(23)+(12)(23)=12=\frac{\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)}{\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)+\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)}=\frac{1}{2}