Solveeit Logo

Question

Mathematics Question on Probability

Events AA and BB are such that P(A)=12,P(B)=712P(A)=\frac{1}{2},P(B)=\frac{7}{12} and (not AA or not BB)=14=\frac{1}{4}.State whether AA and BB are independent.

Answer

It is given that P(A)=12,P(B)=712P(A)=\frac{1}{2},P(B)=\frac{7}{12} and PP(not AA or not BB)=14=\frac{1}{4}
    P(AB)=14\implies P(A'\cup B')=\frac{1}{4}
    P((AB))=14\implies P\bigg((A\cap B)'\bigg)=\frac{1}{4}
14=1P(AB)⇒\frac{1}{4}=1-P(A∩B)
P(AB)=34⇒P(A∩B)=\frac{3}{4}
However, P(A).P(B)$$=\frac{1}{2}×\frac{7}{12}=\frac{7}{24}
\therefore P(AB)P(A).P(B)P(A∩B)≠P(A).P(B) ,i.e., AA and BB are not independent.