Solveeit Logo

Question

Question: Evaluate using trigonometric functions: \[{\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16...

Evaluate using trigonometric functions: tan2π16+tan22π16+tan23π16.......tan27π16{\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}}.......{\tan ^2}\dfrac{{7\pi }}{{16}}

Explanation

Solution

According to the question, Rewrite the values of 7π16\dfrac{{7\pi }}{{16}} , 6π16\dfrac{{6\pi }}{{16}} , 5π16\dfrac{{5\pi }}{{16}} in the given equation. Hence, use the trigonometric formulas and simplify to solve the equation.

Formula used:
Here we use the formula of trigonometric functions that are tan2(π2x)=cot2x{\tan ^2}\left( {\dfrac{\pi }{2} - x} \right) = {\cot ^2}x , 2sinAcosA=sinA22\sin A\cos A = \sin \dfrac{A}{2} , sin2π16+cos2π16=1{\sin ^2}\dfrac{\pi }{{16}} + {\cos ^2}\dfrac{\pi }{{16}} = 1 , (1cos2x)=2sin2x\left( {1 - \cos 2x} \right) = 2{\sin ^2}x .

Complete step-by-step answer:
Let’s start by rewriting the equation tan2π16+tan22π16+tan23π16.......tan27π16{\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}}.......{\tan ^2}\dfrac{{7\pi }}{{16}} as tan2π16+tan22π16+tan23π16+tan24π16+tan25π16+tan26π16+tan27π16{\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}} + {\tan ^2}\dfrac{{4\pi }}{{16}} + {\tan ^2}\dfrac{{5\pi }}{{16}} + {\tan ^2}\dfrac{{6\pi }}{{16}} + {\tan ^2}\dfrac{{7\pi }}{{16}} by filling the dots with values.
For simplifying the equation we can simplify each specific part of equation. As we know that 7π16\dfrac{{7\pi }}{{16}} can be written as π2π16\dfrac{\pi }{2} - \dfrac{\pi }{{16}} , 6π16\dfrac{{6\pi }}{{16}} can be written as π22π16\dfrac{\pi }{2} - \dfrac{{2\pi }}{{16}} , 5π16\dfrac{{5\pi }}{{16}} can be written as π23π16\dfrac{\pi }{2} - \dfrac{{3\pi }}{{16}} and 4π16\dfrac{{4\pi }}{{16}} can be written as π4\dfrac{\pi }{4} . π22π16\dfrac{\pi }{2} - \dfrac{{2\pi }}{{16}}
So, on substituting all the values we get,
tan2π16+tan22π16+tan23π16+tan2π4+tan2(π23π16)+tan2(π22π16)+tan2(π2π16){\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}} + {\tan ^2}\dfrac{\pi }{4} + {\tan ^2}\left( {\dfrac{\pi }{2} - \dfrac{{3\pi }}{{16}}} \right) + {\tan ^2}\left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{{16}}} \right) + {\tan ^2}\left( {\dfrac{\pi }{2} - \dfrac{\pi }{{16}}} \right)
And we also know that, tan2(π2x)=cot2x{\tan ^2}\left( {\dfrac{\pi }{2} - x} \right) = {\cot ^2}x So, using this we will replace tan by cot on all possible positions.
tan2π16+tan22π16+tan23π16+tan2π4+cot2(3π16)+cot2(2π16)+cot2(π16)\Rightarrow {\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}} + {\tan ^2}\dfrac{\pi }{4} + {\cot ^2}\left( {\dfrac{{3\pi }}{{16}}} \right) + {\cot ^2}\left( {\dfrac{{2\pi }}{{16}}} \right) + {\cot ^2}\left( {\dfrac{\pi }{{16}}} \right) .
Taking tan and cot with the same degree in brackets for easy solving.
(tan2π16+cot2π16)+(tan22π16+cot22π16)+(tan23π16+cot23π16)+tan2π4\Rightarrow \left( {{{\tan }^2}\dfrac{\pi }{{16}} + {{\cot }^2}\dfrac{\pi }{{16}}} \right) + \left( {{{\tan }^2}\dfrac{{2\pi }}{{16}} + {{\cot }^2}\dfrac{{2\pi }}{{16}}} \right) + \left( {{{\tan }^2}\dfrac{{3\pi }}{{16}} + {{\cot }^2}\dfrac{{3\pi }}{{16}}} \right) + {\tan ^2}\dfrac{\pi }{4} - Equation 1.
Solving the first bracket by using the formula a2+b2=(a+b)22ab{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab .
tan2π16+cot2π16=(tanπ16+cotπ16)22tanπ16cotπ16{\tan ^2}\dfrac{\pi }{{16}} + {\cot ^2}\dfrac{\pi }{{16}} = {\left( {\tan \dfrac{\pi }{{16}} + \cot \dfrac{\pi }{{16}}} \right)^2} - 2\tan \dfrac{\pi }{{16}}\cot \dfrac{\pi }{{16}} .
Converting tan and cot in terms of sin and cos. So, we get (sinπ16cosπ16+cosπ16sinπ16)22 \Rightarrow {\left( {\dfrac{{\sin \dfrac{\pi }{{16}}}}{{\cos \dfrac{\pi }{{16}}}} + \dfrac{{\cos \dfrac{\pi }{{16}}}}{{\sin \dfrac{\pi }{{16}}}}} \right)^2} - 2 .
By Taking the LCM we get (sin2π16+cos2π16cosπ16sinπ16)22 \Rightarrow {\left( {\dfrac{{{{\sin }^2}\dfrac{\pi }{{16}} + {{\cos }^2}\dfrac{\pi }{{16}}}}{{\cos \dfrac{\pi }{{16}}\sin \dfrac{\pi }{{16}}}}} \right)^2} - 2 .
Multiplying numerator and denominator by 2.
(2(sin2π16+cos2π16)2cosπ16sinπ16)22\Rightarrow {\left( {\dfrac{{2*\left( {{{\sin }^2}\dfrac{\pi }{{16}} + {{\cos }^2}\dfrac{\pi }{{16}}} \right)}}{{2\cos \dfrac{\pi }{{16}}\sin \dfrac{\pi }{{16}}}}} \right)^2} - 2.
As we know sin2π16+cos2π16{\sin ^2}\dfrac{\pi }{{16}} + {\cos ^2}\dfrac{\pi }{{16}} is equal to 1.
(212cosπ16sinπ16)22\Rightarrow {\left( {\dfrac{{2*1}}{{2\cos \dfrac{\pi }{{16}}\sin \dfrac{\pi }{{16}}}}} \right)^2} - 2
Using the identity 2sinAcosA=sinA22\sin A\cos A = \sin \dfrac{A}{2}
So, we get (2sinπ8)22{\left( {\dfrac{2}{{\sin \dfrac{\pi }{8}}}} \right)^2} - 2
Opening the square,
4sin2π82\Rightarrow \dfrac{4}{{{{\sin }^2}\dfrac{\pi }{8}}} - 2
Multiplying numerator and denominator by 2.
422sin2π82\Rightarrow \dfrac{{4*2}}{{2{{\sin }^2}\dfrac{\pi }{8}}} - 2
Using the formula (1cos2x)=2sin2x \Rightarrow \left( {1 - \cos 2x} \right) = 2{\sin ^2}x .
8(1cosπ4)2\Rightarrow \dfrac{8}{{\left( {1 - \cos \dfrac{\pi }{4}} \right)}} - 2
Substituting value of cosπ4\cos \dfrac{\pi }{4} .
8(112)2\Rightarrow \dfrac{8}{{\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)}} - 2
By Taking the LCM we get 82(21)2 \Rightarrow \dfrac{{8\sqrt 2 }}{{\left( {\sqrt 2 - 1} \right)}} - 2.
Rationalising with (2+1)\left( {\sqrt 2 + 1} \right) , we get 82(2+1)2 \Rightarrow 8\sqrt 2 \left( {\sqrt 2 + 1} \right) - 2.
Similarly after solving 2nd bracket 8(1cosπ2)2=82=6 \Rightarrow \dfrac{8}{{\left( {1 - \cos \dfrac{\pi }{2}} \right)}} - 2 = 8 - 2 = 6 and Similarly after solving 3rd bracket 8(1cos3π4)2=82(21)2 \Rightarrow \dfrac{8}{{\left( {1 - \cos \dfrac{{3\pi }}{4}} \right)}} - 2 = 8\sqrt 2 \left( {\sqrt 2 - 1} \right) - 2 .
Thus, Substituting values in equation (1) (tan2π16+cot2π16)+(tan22π16+cot22π16)+(tan23π16+cot23π16)+tan2π4 \Rightarrow \left( {{{\tan }^2}\dfrac{\pi }{{16}} + {{\cot }^2}\dfrac{\pi }{{16}}} \right) + \left( {{{\tan }^2}\dfrac{{2\pi }}{{16}} + {{\cot }^2}\dfrac{{2\pi }}{{16}}} \right) + \left( {{{\tan }^2}\dfrac{{3\pi }}{{16}} + {{\cot }^2}\dfrac{{3\pi }}{{16}}} \right) + {\tan ^2}\dfrac{\pi }{4} .
82(2+1)2+6+1+82(21)2\Rightarrow 8\sqrt 2 \left( {\sqrt 2 + 1} \right) - 2 + 6 + 1 + 8\sqrt 2 \left( {\sqrt 2 - 1} \right) - 2
16+822+7+822822\Rightarrow 16 + 8\sqrt 2 - 2 + 7 + 8\sqrt 2 *\sqrt 2 - 8\sqrt 2 - 2
35\Rightarrow 35

Note: To solve these types of questions, we must remember the trigonometric formulas and algebraic identities to solve it in a simpler way. Hence, simplify all the values by taking L.C.M or rationalising to get the desired result.