Solveeit Logo

Question

Question: Evaluate \[\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \ri...

Evaluate limx6(5+2x3+2)x26\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}.

Explanation

Solution

Hint: Use L’Hopital Rule which states that if limxaf(x)g(x)=f(a)g(a)=00\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{f\left( a \right)}{g\left( a \right)}=\dfrac{0}{0}, we will evaluate the limit by limxaf(x)g(x)=limxaf(x)g(x)=f(a)g(a)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}, to find the limit of the given function.

Complete step-by-step answer:
To evaluate the limit, we will find the left and right hand side of the limit by substituting the given limit in the equation of function.
Thus, by applying right side of the limit, we have limx6+(5+2x3+2)x26=(5+263+2)(6)26=((3+2)23+2)66=\underset{x\to {{\sqrt{6}}^{+}}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\dfrac{\left( \sqrt{5+2\sqrt{6}}-\sqrt{3}+\sqrt{2} \right)}{{{\left( \sqrt{6} \right)}^{2}}-6}=\dfrac{\left( \sqrt{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}-\sqrt{3}+\sqrt{2}} \right)}{6-6}=\infty .
When we apply left side of the limit, we get limx6(5+2x3+2)x26=(5+263+2)(6)26=((3+2)23+2)66=3+23+20=\underset{x\to {{\sqrt{6}}^{-}}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\dfrac{\left( \sqrt{5+2\sqrt{6}}-\sqrt{3}+\sqrt{2} \right)}{{{\left( \sqrt{6} \right)}^{2}}-6}=\dfrac{\left( \sqrt{\sqrt{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}}-\sqrt{3}+\sqrt{2}} \right)}{6-6}=\dfrac{\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}}{-0}=-\infty
As limx6+(5+2x3+2)x26=limx6(5+2x3+2)x26=\underset{x\to {{\sqrt{6}}^{+}}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\infty \ne \underset{x\to {{\sqrt{6}}^{-}}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=-\infty , we will use L’Hopital Rule to find the limit of the function which states that if limxaf(x)g(x)=f(a)g(a)=00\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{f\left( a \right)}{g\left( a \right)}=\dfrac{0}{0}, and then we will find the limit by limxaf(x)g(x)=limxaf(x)g(x)=f(a)g(a)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}.
Substituting a=6,f(x)=5+2x3+2,g(x)=x26a=\sqrt{6},f\left( x \right)=\sqrt{5+2x}-\sqrt{3}+\sqrt{2},g\left( x \right)={{x}^{2}}-6 in the above equation, we have limx6(5+2x3+2)x26=limx6ddx(5+2x3+2)ddx(x26).....(1)\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{\dfrac{d}{dx}({{x}^{2}}-6)}.....\left( 1 \right).
To find the value of ddx(5+2x3+2)\dfrac{d}{dx}\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right), we will write f(x)=5+2x3+2f\left( x \right)=\sqrt{5+2x}-\sqrt{3}+\sqrt{2} as a composition of two functions f(x)=a(x)+b(x)f\left( x \right)=a\left( x \right)+b\left( x \right) where a(x)=5+2x,b(x)=23a\left( x \right)=\sqrt{5+2x},b\left( x \right)=\sqrt{2}-\sqrt{3}.
We will use sum rule of differentiation of two functions which states that if y=a(x)+b(x)y=a\left( x \right)+b\left( x \right) then dydx=ddxa(x)+ddxb(x)\dfrac{dy}{dx}=\dfrac{d}{dx}a\left( x \right)+\dfrac{d}{dx}b\left( x \right).
Substituting a(x)=5+2x,b(x)=23a\left( x \right)=\sqrt{5+2x},b\left( x \right)=\sqrt{2}-\sqrt{3} in the above equation, we have dydx=ddx(5+2x)+ddx(23).....(2)\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \sqrt{5+2x} \right)+\dfrac{d}{dx}\left( \sqrt{2}-\sqrt{3} \right).....\left( 2 \right).
To find the value of ddxa(x)=ddx(5+2x)\dfrac{d}{dx}a\left( x \right)=\dfrac{d}{dx}\left( \sqrt{5+2x} \right), we will write a(x)a\left( x \right) as a composition of two functions a(x)=u(v(x))a\left( x \right)=u\left( v\left( x \right) \right) where u(x)=x,v(x)=5+2xu\left( x \right)=\sqrt{x},v\left( x \right)=5+2x.
We will use chain rule of composition of differentiation of two functions which states that if y=a(x)=u(v(x))y=a\left( x \right)=u\left( v\left( x \right) \right) then dydx=du(v(x))dv(x)×dv(x)dx\dfrac{dy}{dx}=\dfrac{du\left( v\left( x \right) \right)}{dv\left( x \right)}\times \dfrac{dv\left( x \right)}{dx}.
Substituting u(x)=x,v(x)=5+2xu\left( x \right)=\sqrt{x},v\left( x \right)=5+2x in the above equation, we have dydx=du(v(x))dv(x)×dv(x)dx=d(5+2x)d(5+2x)×ddx(5+2x).....(3)\dfrac{dy}{dx}=\dfrac{du\left( v\left( x \right) \right)}{dv\left( x \right)}\times \dfrac{dv\left( x \right)}{dx}=\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}\times \dfrac{d}{dx}\left( 5+2x \right).....\left( 3 \right).
We know that differentiation of any function of the form y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Substituting a=2,n=1,b=5a=2,n=1,b=5 in the above equation, we have ddx(5+2x)=2.....(4)\dfrac{d}{dx}\left( 5+2x \right)=2.....\left( 4 \right).
To find the value of d(5+2x)d(5+2x)\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}, let’s assume t=5+2xt=5+2x.
Thus, we have d(5+2x)d(5+2x)=d(t)dt\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}=\dfrac{d\left( \sqrt{t} \right)}{dt}.
We know that differentiation of any function of the form y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Substituting a=1,n=12,b=0a=1,n=\dfrac{1}{2},b=0 in the above equation, we have d(t)dt=12t\dfrac{d\left( \sqrt{t} \right)}{dt}=\dfrac{1}{2\sqrt{t}}.
Thus, we get d(5+2x)d(5+2x)=d(t)dt=12t=125+2x.....(5)\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}=\dfrac{d\left( \sqrt{t} \right)}{dt}=\dfrac{1}{2\sqrt{t}}=\dfrac{1}{2\sqrt{5+2x}}.....\left( 5 \right).
Substituting equation (4)\left( 4 \right) and (5)\left( 5 \right) in equation (3)\left( 3 \right), we get ddxa(x)=d(5+2x)d(5+2x)×ddx(5+2x)=125+2x×2=15+2x.....(6)\dfrac{d}{dx}a\left( x \right)=\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}\times \dfrac{d}{dx}\left( 5+2x \right)=\dfrac{1}{2\sqrt{5+2x}}\times 2=\dfrac{1}{\sqrt{5+2x}}.....\left( 6 \right).
We know that differentiation of a constant is zero. Thus, we have ddxb(x)=0.....(7)\dfrac{d}{dx}b\left( x \right)=0.....\left( 7 \right).
Substituting equation (6)\left( 6 \right) and (7)\left( 7 \right) in equation (2)\left( 2 \right), we get ddxf(x)=ddx(5+2x)+ddx(23)=15+2x.....(8)\dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}\left( \sqrt{5+2x} \right)+\dfrac{d}{dx}\left( \sqrt{2}-\sqrt{3} \right)=\dfrac{1}{\sqrt{5+2x}}.....\left( 8 \right).
To find the value of ddx(x26)\dfrac{d}{dx}({{x}^{2}}-6), we will substitute a=1,n=2,b=6a=1,n=2,b=-6 in the equation where differentiation of any function of the form y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Thus, we have ddxg(x)=2x.....(9)\dfrac{d}{dx}g\left( x \right)=2x.....\left( 9 \right).
Substituting equation (8)\left( 8 \right) and (9)\left( 9 \right) in equation (1)\left( 1 \right), we get limx6(5+2x3+2)x26=limx0ddx(5+2x3+2)ddx(x26)=limx615+2x2x\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{\dfrac{d}{dx}({{x}^{2}}-6)}=\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\sqrt{5+2x}}}{2x}.
Solving the above equation, we get limx6ddx(5+2x3+2)ddx(x26)=limx615+2x2x=limx612x5+2x=1265+26\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{\dfrac{d}{dx}({{x}^{2}}-6)}=\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\sqrt{5+2x}}}{2x}=\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{1}{2x\sqrt{5+2x}}=\dfrac{1}{2\sqrt{6}\sqrt{5+2\sqrt{6}}}.
Thus, we have limx0(5+2x3+2)x26=1265+26\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\dfrac{1}{2\sqrt{6}\sqrt{5+2\sqrt{6}}}.

Note: We won’t get the correct answer without the use of L’Hopital Rule and using the identity (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. If we simply substitute the values in the given equation, we will get an incorrect answer. Also, one must carefully differentiate the functions in the numerator and denominator.