Solveeit Logo

Question

Question: Evaluate \(\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}\)....

Evaluate limxa(2+x)5/2(a+2)5/2xa\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}.

Explanation

Solution

The given problem is pretty easy and you can solve it in a few steps. Here, you can use the concept of limits and you will let a condition that when x=a, then assume the form as00\dfrac{0}{0}. So, let’s see how we can solve the given problem.

Step-By-Step Solution:
The given problem statement is we need to evaluatelimxa(2+x)5/2(a+2)5/2xa\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}.
Firstly, when x=a, the expression limxa(2+x)5/2(a+2)5/2xa\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a} assumes the form as00\dfrac{0}{0}.
So, we will letZ=limxa(2+x)5/2(a+2)5/2xaZ=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}.
If we use the formulalimxanaanna=nan1\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}, then also Z will not show the form00\dfrac{0}{0}as mentioned.
So, we need to simplify, that means,
Now, we will add 2 in the denominator, but we will not change the denominator so we will subtract 2 also, that means, we get,
Z=limxa(2+x)5/2(a+2)5/22+x(a+2)\Rightarrow Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{2+x-(a+2)}
Now, we will let 2+x=y and a+2=k, asxa;ykx\to a;y\to k, we get,
Z=limxay5/2k5/2yk\Rightarrow Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{y}^{5/2}}-{{k}^{5/2}}}{y-k}
Now, we will use the formulalimxanaanna=nan1\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}, we get,
Z=52k521\Rightarrow Z=\dfrac{5}{2}{{k}^{\dfrac{5}{2}-1}}
Z=52k32\Rightarrow Z=\dfrac{5}{2}{{k}^{\dfrac{3}{2}}}
Now, we will place the value of k in the above equation, we get,
Z=52(a+2)32\Rightarrow Z=\dfrac{5}{2}{{(a+2)}^{\dfrac{3}{2}}}

Therefore, after evaluation oflimxa(2+x)5/2(a+2)5/2xa\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}, we get, 52(a+2)32\dfrac{5}{2}{{(a+2)}^{\dfrac{3}{2}}}.

Note:
You just need to note for the evaluation for the above question we need to check if it is in the form of 00\dfrac{0}{0}, if it is not then we will continue to simplify. Here, in this question we used the formula limxanaanna=nan1\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}} in the simplification.