Question
Question: Evaluate \(\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\cos }^{2}}x \right)}{{{x}^{2...
Evaluate x→0limx2sin(πcos2x) is equal to.
A. −π
B. π
C. 2π
D. 1
Solution
Hint: Put cos2x=1−sin2x. Then modify the function as limit of trigonometric function. Multiply by (πsin2x)in numerator and denominator.
Complete step-by-step answer:
In this limit we have a trigonometric question where the variables x represent the angle of the right angle triangle.
First simplify the trigonometric function by identities,
x→0limx2sin(πcos2x)...................(i)
We know cos2x+sin2x=1
⇒cos2x=1−sin2x.
Substitute value of cos2x in equation (i);
=x→0limx2sin(n(1−sin2x))−x→0limx2sin(π−πsin2x)
We know it’s of the form sin(A−B)=sinAcosB−cosAsinB
∴sin(π−πsin2x)=(sinπ×cos(πsin2x))−(cosπsin(πsin2x))
We know sinπ=0 &cosπ=−1
∴sin(π−πsin2x)=sin(πsin2x)
The angle including the sine function belongs to the 2nd quadrant. The sine function is positive in the 2nd quadrant.
=x→0limx2sinπsin2x=x→0limx2sin(πsin2x)
⇒x→0limx2sin(πsin2x), sine function is positive in second quadrant.
Now we have to modify the function as the limit of the trigonometric function. Remember that if a sine function involves a limit, then you must try to transform the function exactly as the limit of the quotient of sin x by x, as x approaches zero rule.
∴ Multiply and divide the function πsin2x.