Solveeit Logo

Question

Question: Evaluate \(\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\cos }^{2}}x \right)}{{{x}^{2...

Evaluate limx0sin(πcos2x)x2\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\cos }^{2}}x \right)}{{{x}^{2}}} is equal to.
A. π-\pi
B. π\pi
C. π2\dfrac{\pi }{2}
D. 1

Explanation

Solution

Hint: Put cos2x=1sin2x.{{\cos }^{2}}x=1-{{\sin }^{2}}x. Then modify the function as limit of trigonometric function. Multiply by (πsin2x)\left( \pi {{\sin }^{2}}x \right)in numerator and denominator.

Complete step-by-step answer:
In this limit we have a trigonometric question where the variables x represent the angle of the right angle triangle.
First simplify the trigonometric function by identities,
limx0sin(πcos2x)x2...................(i)\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\cos }^{2}}x \right)}{{{x}^{2}}}...................\left( i \right)
We know cos2x+sin2x=1{{\cos }^{2}}x+{{\sin }^{2}}x=1
cos2x=1sin2x.\Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x.
Substitute value of cos2x{{\cos }^{2}}x in equation (i);
=limx0sin(n(1sin2x))x2limx0sin(ππsin2x)x2=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( n\left( 1-{{\sin }^{2}}x \right) \right)}{{{x}^{2}}}-\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi -\pi {{\sin }^{2}}x \right)}{{{x}^{2}}}
We know it’s of the form sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B
sin(ππsin2x)=(sinπ×cos(πsin2x))(cosπsin(πsin2x))\therefore \sin \left( \pi -\pi {{\sin }^{2}}x \right)=\left( \sin \pi \times \cos \left( \pi {{\sin }^{2}}x \right) \right)-\left( \cos \pi \sin \left( \pi {{\sin }^{2}}x \right) \right)
We know sinπ=0 &cosπ=1\sin \pi =0\ \And \,\cos \pi =-1
sin(ππsin2x)=sin(πsin2x)\therefore \sin \left( \pi -\pi {{\sin }^{2}}x \right)=\sin \left( \pi {{\sin }^{2}}x \right)
The angle including the sine function belongs to the 2nd quadrant. The sine function is positive in the 2nd quadrant.
=limx0sinπsin2xx2 =limx0sin(πsin2x)x2 \begin{aligned} & =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \pi {{\sin }^{2}}x}{{{x}^{2}}} \\\ & =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}} \\\ \end{aligned}
limx0sin(πsin2x)x2\Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}, sine function is positive in second quadrant.
Now we have to modify the function as the limit of the trigonometric function. Remember that if a sine function involves a limit, then you must try to transform the function exactly as the limit of the quotient of sin x by x, as x approaches zero rule.
\therefore Multiply and divide the function πsin2x\pi {{\sin }^{2}}x.

& =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times 1 \right] \\\ & =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times \dfrac{\pi {{\sin }^{2}}x}{\pi {{\sin }^{2}}x} \right] \\\ & =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times \dfrac{\pi {{\sin }^{2}}x}{{{x}^{2}}} \right] \\\ \end{aligned}$$ Apply the product rule of limits, the limit of product of two functions is equal to product of their limits. $$\begin{aligned} & =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\pi {{\sin }^{2}}x}{{{x}^{2}}} \\\ & =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \\\ \end{aligned}$$ $$\pi {{\sin }^{2}}x$$is the angle inside the sine function and its denominator but the same angle should be the input for the first limit function. We know $x\to 0$, $\sin x\to \sin \left( 0 \right)\Rightarrow \sin x\to 0$ Similarly ${{\sin }^{2}}x\to {{0}^{2}}\ \ \therefore {{\sin }^{2}}\to 0$ $$\pi {{\sin }^{2}}x\to \pi \times 0\ \ \ \therefore \pi {{\sin }^{2}}x\to 0$$ $\therefore $ if $$x\to 0$$, then $$\pi {{\sin }^{2}}x\to 0$$ $\begin{aligned} & \Rightarrow \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \\\ & =\underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{\sin x}{x} \right)}^{2}} \\\ & =\underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi {{\left( \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x} \right)}^{2}} \\\ \end{aligned}$ Use the limit of $\dfrac{\sin x}{x}$ rule as x approaches 0. The limit of $\dfrac{\sin x}{x}$ as $x\to 0$is equal to 1 and apply it to each function to solve this limit trigonometric problem. $\begin{aligned} & \therefore \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}=1 \\\ & \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 \\\ & \Rightarrow \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi {{\left[ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x} \right]}^{2}} \\\ & 1\times \pi {{\left( 1 \right)}^{2}}=1\times \pi \\\ & =\pi \\\ \end{aligned}$ Therefore, it successfully solved the limit and the answer is option B. Note: Each function in limit form is almost similar to $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}$, but it is essential to make adjustments for applying limit trigonometric rule.