Solveeit Logo

Question

Question: Evaluate \(u=\log \left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)\Rightarrow \left( x+y+z \right)\...

Evaluate u=log(x3+y3+z33xyz)(x+y+z)(uz+uy+uz)=u=\log \left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)\Rightarrow \left( x+y+z \right)\left( {{u}_{z}}+{{u}_{y}}+{{u}_{z}} \right)=
A. 0
B. xy+zx-y+z
C. 2
D. 3

Explanation

Solution

ux,uy and uz{{u}_{x}},{{u}_{y}}\ and\ {{u}_{z}} are standard notations used for partial differentiation of u with respect to x, y and z respectively. First find out ux,uy and uz{{u}_{x}},{{u}_{y}}\ and\ {{u}_{z}} by partially differentiating the equation u=log(x3+y3+z33xyz)''u=\log \left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)'' with respect to x, y and z respectively. Then put the values obtained in (x+y+z)(uz+uy+uz)\left( x+y+z \right)\left( {{u}_{z}}+{{u}_{y}}+{{u}_{z}} \right) and further simplify to get the answer. Differentiation of logx\log x with respect to x is 1x\dfrac{1}{x}.

Complete step-by-step answer:
Given: u=log(x3+y3+z33xyz)u=\log \left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right) and we have to find (x+y+z)(uz+uy+uz)\left( x+y+z \right)\left( {{u}_{z}}+{{u}_{y}}+{{u}_{z}} \right).
Let us first find ux,uy and uz{{u}_{x}},{{u}_{y}}\ and\ {{u}_{z}}
ux={{u}_{x}}= Partial differentiation of u with respect to x denoted by ux''\dfrac{\partial u}{\partial x}''.
In calculating partial differentiation with respect to any variable, we assume other variables to be constant.
So, for calculating ux\dfrac{\partial u}{\partial x}, we will assume ‘y’ and ‘z’ to be constants. So, u will be only a function of x:
u=log(x3+y3+z33xyz)u=\log \left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)
We know differentiation of logx\log x is 1x\dfrac{1}{x}.
Now, using Product rule of differentiation,
ux=ux=(x3+y3+z33xyz)log(x3+y3+z33xyz)×x(x3+y3+z33xyz) =(1(x3+y3+z33xyz))×(3x2+0+03yz) [As we have assume y !!&!! z to be constants] =ux=ux=3x23yzx3+y3+z33xyz............(1) \begin{aligned} & {{u}_{x}}=\dfrac{\partial u}{\partial x}=\dfrac{\partial }{\partial \left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)}\log \left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)\times \dfrac{\partial }{\partial x}\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right) \\\ & =\left( \dfrac{1}{\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)} \right)\times \left( 3{{x}^{2}}+0+0-3yz \right) \\\ & \left[ \text{As we have assume y }\\!\\!\And\\!\\!\text{ z to be constants} \right] \\\ & ={{u}_{x}}=\dfrac{\partial u}{\partial x}=\dfrac{3{{x}^{2}}-3yz}{{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz}............\left( 1 \right) \\\ \end{aligned}
Similarly, assuming ‘x’ and ‘z’ to be constants and by using the Product rule of differentiation, we will calculate uy\dfrac{\partial u}{\partial y}.
uy=uy=(x3+y3+z33xyz)log(x3+y3+z33xyz)×y(x3+y3+z33xyz) =1(x3+y3+z33xyz)×(0+3y2+03xz) [As we have assume x !!&!! z to be constants] =uy=uy=3y23xzx3+y3+z33xyz............(2) \begin{aligned} & {{u}_{y}}=\dfrac{\partial u}{\partial y}=\dfrac{\partial }{\partial \left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)}\log \left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)\times \dfrac{\partial }{\partial y}\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right) \\\ & =\dfrac{1}{\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)}\times \left( 0+3{{y}^{2}}+0-3xz \right) \\\ & \left[ \text{As we have assume x }\\!\\!\And\\!\\!\text{ z to be constants} \right] \\\ & ={{u}_{y}}=\dfrac{\partial u}{\partial y}=\dfrac{3{{y}^{2}}-3xz}{{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz}............\left( 2 \right) \\\ \end{aligned}
Similarly, assuming ‘x’ and ‘y’ to be constants and by using Product rule of differentiation, we will get,
uz=uz=(x3+y3+z33xyz)log(x3+y3+z33xyz)×z(x3+y3+z33xyz) =1(x3+y3+z33xyz)×(0+0+3z23xy) [As we have assume x !!&!! y to be constants] =uz=uz=3z23xyx3+y3+z33xyz............(3) \begin{aligned} & {{u}_{z}}=\dfrac{\partial u}{\partial z}=\dfrac{\partial }{\partial \left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)}\log \left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)\times \dfrac{\partial }{\partial z}\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right) \\\ & =\dfrac{1}{\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)}\times \left( 0+0+3{{z}^{2}}-3xy \right) \\\ & \left[ \text{As we have assume x }\\!\\!\And\\!\\!\text{ y to be constants} \right] \\\ & ={{u}_{z}}=\dfrac{\partial u}{\partial z}=\dfrac{3{{z}^{2}}-3xy}{{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz}............\left( 3 \right) \\\ \end{aligned}
According to the question, we have to find (x+y+z)(uz+uy+uz)\left( x+y+z \right)\left( {{u}_{z}}+{{u}_{y}}+{{u}_{z}} \right).
On putting values of ux,uy and uz{{u}_{x}},{{u}_{y}}\ and\ {{u}_{z}} from equation (1), (2) and (3) respectively, we will get,
(x+y+z)(uz+uy+uz)=(x+y+z)[3x23yz(x3+y3+z33xyz)+3y23xz(x3+y3+z33xyz)+3z23xy(x3+y3+z33xyz)]\left( x+y+z \right)\left( {{u}_{z}}+{{u}_{y}}+{{u}_{z}} \right)=\left( x+y+z \right)\left[ \dfrac{3{{x}^{2}}-3yz}{\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)}+\dfrac{3{{y}^{2}}-3xz}{\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)}+\dfrac{3{{z}^{2}}-3xy}{\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)} \right]Taking LCM and adding, we will get,
(x+y+z)(uz+uy+uz)=(x+y+z)[(3x23yz)+(3y23xz)+(3z23xy)(x3+y3+z33xyz)]\left( x+y+z \right)\left( {{u}_{z}}+{{u}_{y}}+{{u}_{z}} \right)=\left( x+y+z \right)\left[ \dfrac{\left( 3{{x}^{2}}-3yz \right)+\left( 3{{y}^{2}}-3xz \right)+\left( 3{{z}^{2}}-3xy \right)}{\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)} \right]
We know the identity:
(x3+y3+z33xyz)=(x+y+z)(x2+y2+z2xyyzzx)\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)
Using this identity in above equation, we will get,
(x+y+z)(uz+uy+uz)=(x+y+z)[(3x23yz)+(3y23xz)+(3z23xy)(x+y+z)(x2+y2+z2xyyzzx)]\left( x+y+z \right)\left( {{u}_{z}}+{{u}_{y}}+{{u}_{z}} \right)=\left( x+y+z \right)\left[ \dfrac{\left( 3{{x}^{2}}-3yz \right)+\left( 3{{y}^{2}}-3xz \right)+\left( 3{{z}^{2}}-3xy \right)}{\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)} \right]
On the RHS, dividing both numerator and denominator by (x+y+z)\left( x+y+z \right), we will get,
(x+y+z)(uz+uy+uz)=(3x23yz)+(3y23xz)+(3z23xy)(x2+y2+z2xyyzzx)\left( x+y+z \right)\left( {{u}_{z}}+{{u}_{y}}+{{u}_{z}} \right)=\dfrac{\left( 3{{x}^{2}}-3yz \right)+\left( 3{{y}^{2}}-3xz \right)+\left( 3{{z}^{2}}-3xy \right)}{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)}
Rearranging the terms in the numerator of RHS, we will get,
(x+y+z)(uz+uy+uz)=(3x2+3y2+3z23xy3yz3zx)(x2+y2+z2xyyzzx)\left( x+y+z \right)\left( {{u}_{z}}+{{u}_{y}}+{{u}_{z}} \right)=\dfrac{\left( 3{{x}^{2}}+3{{y}^{2}}+3{{z}^{2}}-3xy-3yz-3zx \right)}{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)}
Taking 3 common from the terms in numerator of RHS, we will get,
(x+y+z)(uz+uy+uz)=3(x2+y2+z2xyyzzx)(x2+y2+z2xyyzzx)\left( x+y+z \right)\left( {{u}_{z}}+{{u}_{y}}+{{u}_{z}} \right)=\dfrac{3\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)}{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)}
Now, dividing both numerator and denominator by (x2+y2+z2xyyzzx)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right) on RHS, we will get,
(x+y+z)(uz+uy+uz)=3\left( x+y+z \right)\left( {{u}_{z}}+{{u}_{y}}+{{u}_{z}} \right)=3
Hence, the required value of (x+y+z)(uz+uy+uz)\left( x+y+z \right)\left( {{u}_{z}}+{{u}_{y}}+{{u}_{z}} \right) is 3 and option (D) is the correct answer.

Note: We have used an identity (x3+y3+z33xyz)=(x+y+z)(x2+y2+z2xyyzzx)\left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz \right)=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right). If you don’t know this identity then, we can prove this identity as follows:
LHS=x3+y3+z33xyzLHS={{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz
On adding and subtracting (3x2y+3xy2)\left( 3{{x}^{2}}y+3x{{y}^{2}} \right) we will get,
LHS=x3+y3+3x2y+3xy2+z33xyz3x2y3xy2LHS={{x}^{3}}+{{y}^{3}}+3{{x}^{2}}y+3x{{y}^{2}}+{{z}^{3}}-3xyz-3{{x}^{2}}y-3x{{y}^{2}}
We know,
(x+y)3=x3+y3+3xy(x+y) =x3+y3+3x2y+3xy2 \begin{aligned} & {{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right) \\\ & ={{x}^{3}}+{{y}^{3}}+3{{x}^{2}}y+3x{{y}^{2}} \\\ \end{aligned}
So, replacing x3+y3+3x2y+3xy2{{x}^{3}}+{{y}^{3}}+3{{x}^{2}}y+3x{{y}^{2}} by (x+y)3{{\left( x+y \right)}^{3}}, we will get,
LHS=(x+y)3+z33xyz3x2y3xy2LHS={{\left( x+y \right)}^{3}}+{{z}^{3}}-3xyz-3{{x}^{2}}y-3x{{y}^{2}}
Taking 3xy common from the last three terms, we will get,
LHS=(x+y)3+z33xy(x+y+z)LHS={{\left( x+y \right)}^{3}}+{{z}^{3}}-3xy(x+y+z)
We know a3+b3=(a+b)(a2ab+b2){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)
Let a=x+y and b=za=x+y\ and\ b=z
(x+y)3+z3=(x+y+z)[(x+y)2(x+y)z+z2]\Rightarrow {{\left( x+y \right)}^{3}}+{{z}^{3}}=\left( x+y+z \right)\left[ {{\left( x+y \right)}^{2}}-\left( x+y \right)z+{{z}^{2}} \right]
Replacing (x+y)3+z3{{\left( x+y \right)}^{3}}+{{z}^{3}} by (x+y+z)[(x+y)2(x+y)z+z2]\left( x+y+z \right)\left[ {{\left( x+y \right)}^{2}}-\left( x+y \right)z+{{z}^{2}} \right] we will get,
LHS=(x+y+z)[(x+y)2(x+y)z+z2]3xy(x+y+z)LHS=\left( x+y+z \right)\left[ {{\left( x+y \right)}^{2}}-\left( x+y \right)z+{{z}^{2}} \right]-3xy(x+y+z)
Taking (x+y+z)\left( x+y+z \right), we will get,
LHS=(x+y+z)[(x+y)2(x+y)z+z23xy]LHS=\left( x+y+z \right)\left[ {{\left( x+y \right)}^{2}}-\left( x+y \right)z+{{z}^{2}}-3xy \right]
Replacing (x+y)2{{\left( x+y \right)}^{2}} with x2+y2+2xy{{x}^{2}}+{{y}^{2}}+2xy, we will get,

& LHS=\left( x+y+z \right)\left[ {{x}^{2}}+{{y}^{2}}+2xy-xz-yz+{{z}^{2}}-3xy \right] \\\ & LHS=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xz-yz-zx \right) \\\ & LHS=RHS \\\ \end{aligned}$$ Identity Proved.