Solveeit Logo

Question

Question: Evaluate the values of \(\sin {15^ \circ }\) and \(\cos {15^ \circ }\)....

Evaluate the values of sin15\sin {15^ \circ } and cos15\cos {15^ \circ }.

Explanation

Solution

For the value like sin15\sin {15^ \circ }, cos15\cos {15^ \circ }, sin75\sin {75^ \circ } and cos75\cos {75^ \circ } we need to split the angle into the binomial terms of angles for which the values of trigonometric terms are known. In this problem we need to split 15{15^ \circ } into 45{45^ \circ } and 30{30^ \circ }.

Complete step-by-step answer:
We are asked to find out the values of sin15\sin {15^ \circ } and cos15\cos {15^ \circ }. So, firstly let us find the value of and sin15\sin {15^ \circ }later on cos15\cos {15^ \circ }.
Firstly, split 15{15^ \circ } into 45{45^ \circ } and 30{30^ \circ }.
sin(15)=sin(4530)\Rightarrow \sin \left( {{{15}^ \circ }} \right) = \sin \left( {{{45}^ \circ } - {{30}^ \circ }} \right)
Here, we need to use the most popular trigonometric formula to expand for further simplification
sin(AB)=sinAcosBsinBcosA\sin \left( {A - B} \right) = \sin A\cos B - \sin B\cos A
Substituting the AA value as 45{45^ \circ } and BB value as 30{30^ \circ }. We get,
sin45cos30sin30cos45\Rightarrow \sin {45^ \circ }\cos {30^ \circ } - \sin {30^ \circ }\cos {45^ \circ }
And we know that sin45=12\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}, sin30=12\sin {30^ \circ } = \dfrac{1}{2}, cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} and cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}
Substituting the above values, we will get as follows:
(12)(32)(12)(12) =322122 =3122  \Rightarrow \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\\ = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} - \dfrac{1}{{2\sqrt 2 }} \\\ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \\\
Hence, we get sin15=3122\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}
Now, let’s find out cos15\cos {15^ \circ } in a similar way.
Firstly, split 15{15^ \circ } into 45{45^ \circ } and 30{30^ \circ }.
cos(15)=cos(4530)\Rightarrow \cos \left( {{{15}^ \circ }} \right) = \cos \left( {{{45}^ \circ } - {{30}^ \circ }} \right)
Here, we need to use the most popular trigonometric formula to expand for further simplification
cos(AB)=cosAcosB+sinAsinB\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B
Substituting the AAvalue as 45{45^ \circ } and BB value as 30{30^ \circ }. We get,
cos45cos30sin45sin30\Rightarrow \cos {45^ \circ }\cos {30^ \circ } - \sin {45^ \circ }\sin {30^ \circ }
And we know that sin45=12\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}, sin30=12\sin {30^ \circ } = \dfrac{1}{2}, cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} and cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}
Substituting the above values, we will get as follows:
(12)(12)(12)(32) =122322 =1322  \Rightarrow \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{2}} \right) - \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\\ = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} \\\ = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} \\\
Hence, we get cos15=1322\cos {15^ \circ } = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}

Note: This problem can be solved in other ways also. We know the formula cos2θ=12sin2θ\cos 2\theta = 1 - 2{\sin ^2}\theta and cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1. By substituting the θ=15\theta = {15^ \circ } in the above equations, we can get the same values.