Solveeit Logo

Question

Question: Evaluate the value of the matrix: \[\Delta =\left| \begin{matrix} \cos \alpha \cos \beta & \cos...

Evaluate the value of the matrix: Δ=cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα \Delta =\left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right|.

Explanation

Solution

Hint: Use the fact that the value of a 3×33\times 3 determinant of the form abc def ghi \left| \begin{matrix} a & b & c \\\ d & e & f \\\ g & h & i \\\ \end{matrix} \right| is a(eifh)b(digf)+c(dheg)a\left( ei-fh \right)-b\left( di-gf \right)+c(dh-eg). Substitute the value of the variables by comparing it with the given matrix. Simplify the value of the matrix using the trigonometric identity cos2x+sin2x=1{{\cos }^{2}}x+{{\sin }^{2}}x=1.

Step-by-step answer:
We have to calculate the value of the matrix Δ=cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα \Delta =\left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right|. We observe that this matrix has 3 rows and 3columns. Thus, it is a 3×33\times 3 matrix.
We will now calculate the value of the given matrix using the fact that the value of the matrix of the form abc def ghi \left| \begin{matrix} a & b & c \\\ d & e & f \\\ g & h & i \\\ \end{matrix} \right| is a(eifh)b(digf)+c(dheg)a\left( ei-fh \right)-b\left( di-gf \right)+c(dh-eg).
We will now substitute the values a=cosαcosβ,b=cosαsinβ,c=sinαa=\cos \alpha \cos \beta ,b=\cos \alpha \sin \beta ,c=-\sin \alpha , d=sinβ,e=cosβ,f=0d=-\sin \beta ,e=\cos \beta ,f=0 and g=sinαcosβ,h=sinαsinβ,i=cosαg=\sin \alpha \cos \beta ,h=\sin \alpha \sin \beta ,i=\cos \alpha in each row of the matrix.
Thus, we have Δ=cosαcosβ(cosαcosβ0(cosαcosβ))cosαsinβ(cosαsinβ0(sinαcos2β))sinα(sinαsin2βsinαcos2β)\Delta =\cos \alpha \cos \beta \left( \cos \alpha \cos \beta -0\left( \cos \alpha \cos \beta \right) \right)-\cos \alpha \sin \beta \left( -\cos \alpha \sin \beta -0\left( \sin \alpha {{\cos }^{2}}\beta \right) \right)-\sin \alpha \left( -\sin \alpha {{\sin }^{2}}\beta -\sin \alpha {{\cos }^{2}}\beta \right).
Simplifying the above expression, we have Δ=cos2αcos2β+cos2αsin2β+sin2αsin2β+sin2αcos2β\Delta ={{\cos }^{2}}\alpha {{\cos }^{2}}\beta +{{\cos }^{2}}\alpha {{\sin }^{2}}\beta +{{\sin }^{2}}\alpha {{\sin }^{2}}\beta +{{\sin }^{2}}\alpha {{\cos }^{2}}\beta .
Rearranging the terms of the above equation, we have Δ=cos2α(cos2β+sin2β)+sin2α(cos2β+sin2β)\Delta ={{\cos }^{2}}\alpha \left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right)+{{\sin }^{2}}\alpha \left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right).
We know the trigonometric identity cos2x+sin2x=1{{\cos }^{2}}x+{{\sin }^{2}}x=1.
Thus, we have Δ=cos2α(1)+sin2α(1)=cos2α+sin2α\Delta ={{\cos }^{2}}\alpha \left( 1 \right)+{{\sin }^{2}}\alpha \left( 1 \right)={{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha .
So, we have Δ=cos2α+sin2α=1\Delta ={{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha =1.
Hence, the value of the matrix Δ=cosαcosβcosαsinβsinα sinβcosβ0 sinαcosβsinαsinβcosα \Delta =\left| \begin{matrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\\ -\sin \beta & \cos \beta & 0 \\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\\ \end{matrix} \right| is 1.

Note: We can expand the matrix along any row or column. However, in each case, the value of the matrix remains the same. A matrix is a rectangular array of numbers, symbols, or expressions arranged in rows and columns. The dimension of a matrix is written as the product of the number of rows and columns. Two matrices can be added or subtracted element by element if they have the same dimension.