Solveeit Logo

Question

Question: Evaluate the value of the integral \(\int{\dfrac{1}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}\)....

Evaluate the value of the integral 1cos4x+sin4xdx\int{\dfrac{1}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}.

Explanation

Solution

First, before proceeding for this, we must know that trigonometric functions integral can be solved only when we know some of the trigonometric identities. Then, by dividing the numerator and denominator by cos4x{{\cos }^{4}}xand using the identities as 1cosx=secx\dfrac{1}{\cos x}=\sec x, sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan xand sec2x=1+tan2x{{\sec }^{2}}x=1+{{\tan }^{2}}x, we get the simple integral form. Then, by using the substitution method and the formula for the integral as 1x2+a2dx=1atan1xa\int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}dx}=\dfrac{1}{a}{{\tan }^{-1}}\dfrac{x}{a}, we get the final result.

Complete step-by-step answer :
In this question, we are supposed to find the value of the integral 1cos4x+sin4xdx\int{\dfrac{1}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}.
So, before proceeding for this, we must know that trigonometric functions integral can be solved only when we know some of the trigonometric identities.
Now, by dividing the numerator and denominator by cos4x{{\cos }^{4}}x, we get:
1cos4xcos4xcos4x+sin4xcos4xdx\int{\dfrac{\dfrac{1}{{{\cos }^{4}}x}}{\dfrac{{{\cos }^{4}}x}{{{\cos }^{4}}x}+\dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}}dx}
Now, by using the trigonometric identity as 1cosx=secx\dfrac{1}{\cos x}=\sec xand sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x, we get:
sec4x1+tan4xdx\int{\dfrac{{{\sec }^{4}}x}{1+{{\tan }^{4}}x}dx}
Now, by using the another identity as sec2x=1+tan2x{{\sec }^{2}}x=1+{{\tan }^{2}}xin the above integral, we get:
sec2x(1+tan2x)1+tan4xdx\int{\dfrac{{{\sec }^{2}}x\left( 1+{{\tan }^{2}}x \right)}{1+{{\tan }^{4}}x}dx}
Now, let us assume that tanx=t\tan x=t to solve the above integral as by differentiating the assumed equation, we get:
sec2xdx=dt{{\sec }^{2}}xdx=dt
The, by replacing all the values of the integral in form of t, we get:
1+t21+t4dt\int{\dfrac{1+{{t}^{2}}}{1+{{t}^{4}}}dt}
Now, by dividing the numerator and denominator by t2{{t}^{2}}, we get:
1t2+11t2+t2dt\int{\dfrac{\dfrac{1}{{{t}^{2}}}+1}{\dfrac{1}{{{t}^{2}}}+{{t}^{2}}}dt}
Now, by using the concept of the completing the square in the denominator, we get:
1t2+1(t1t)2+2dt\int{\dfrac{\dfrac{1}{{{t}^{2}}}+1}{{{\left( t-\dfrac{1}{t} \right)}^{2}}+2}dt}
Then, again by using assumption that t1t=ut-\dfrac{1}{t}=uand solve them by using differentiation as:
(1+1t2)dt=du\left( 1+\dfrac{1}{{{t}^{2}}} \right)dt=du
Now, by substituting all the values in the integral in form of u, we get:
1u2+2du\int{\dfrac{1}{{{u}^{2}}+2}du}
So, we get the value of the integral by using the formula 1x2+a2dx=1atan1xa\int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}dx}=\dfrac{1}{a}{{\tan }^{-1}}\dfrac{x}{a}as:
1u2+22du=12tan1u2+c\int{\dfrac{1}{{{u}^{2}}+{{\sqrt{2}}^{2}}}du}=\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\dfrac{u}{\sqrt{2}}+c
Now, by substituting the value of u as assumed above, we get:
12tan1u2+c=12tan1(t1t)2+c 12tan1(t21t)2+c \begin{aligned} & \dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\dfrac{u}{\sqrt{2}}+c=\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\dfrac{\left( t-\dfrac{1}{t} \right)}{\sqrt{2}}+c \\\ & \Rightarrow \dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\dfrac{\left( \dfrac{{{t}^{2}}-1}{t} \right)}{\sqrt{2}}+c \\\ \end{aligned}
Then, by substituting the value of t as assumed above, we get:
12tan1(t21t)2+c=12tan1(tan2x1tanx)2+c 12tan1(12(tan2x1tanx))+c \begin{aligned} & \dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\dfrac{\left( \dfrac{{{t}^{2}}-1}{t} \right)}{\sqrt{2}}+c=\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\dfrac{\left( \dfrac{{{\tan }^{2}}x-1}{\tan x} \right)}{\sqrt{2}}+c \\\ & \Rightarrow \dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{2}}\left( \dfrac{{{\tan }^{2}}x-1}{\tan x} \right) \right)+c \\\ \end{aligned}
So, we get the final value of the integral as 12tan1(12(tan2x1tanx))+c\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{2}}\left( \dfrac{{{\tan }^{2}}x-1}{\tan x} \right) \right)+c.

Note : Now, to solve these types of the questions we need to know some of the basic formulas of the differentiation used above to get the result easily. So, some of the formulas are:
ddx(tanx)=sec2x ddx(1t)=1t2 \begin{aligned} & \dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x \\\ & \dfrac{d}{dx}\left( \dfrac{-1}{t} \right)=\dfrac{1}{{{t}^{2}}} \\\ \end{aligned}.