Solveeit Logo

Question

Question: Evaluate the value of the integral \(\int {\dfrac{{\sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x}}{{\sin 2...

Evaluate the value of the integral sinx+4sin3x+6sin5x+3sin7xsin2x+3sin4x+3sin6xdx\int {\dfrac{{\sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x}}{{\sin 2x + 3\sin 4x + 3\sin 6x}}} dx.

Explanation

Solution

Hint: Here, we will proceed by splitting the terms in the numerator of the given integral in such a way that the formulas sinA+sinB=2sin(A+B2)cos(AB2)\sin {\text{A}} + \sin {\text{B}} = 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right) and cosA+cosB=2cos(A+B2)cos(AB2)\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right) can be used to convert the numerator in terms of the denominator of the given integral.

Complete step-by-step answer:
Let us suppose the integral I=(sinx+4sin3x+6sin5x+3sin7xsin2x+3sin4x+3sin6x)dx (1){\text{I}} = \int {\left( {\dfrac{{\sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x}}{{\sin 2x + 3\sin 4x + 3\sin 6x}}} \right)} dx{\text{ }} \to {\text{(1)}}
Let us consider the numerator of the integral mentioned in equation (1), we get
sinx+4sin3x+6sin5x+3sin7x=sinx+(4sin3x+4sin5x)+(2sin5x+2sin7x)+sin7x sinx+4sin3x+6sin5x+3sin7x=(sinx+sin7x)+4(sin3x+sin5x)+2(sin5x+sin7x) (2)  \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = \sin x + \left( {4\sin 3x + 4\sin 5x} \right) + \left( {2\sin 5x + 2\sin 7x} \right) + \sin 7x \\\ \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = \left( {\sin x + \sin 7x} \right) + 4\left( {\sin 3x + \sin 5x} \right) + 2\left( {\sin 5x + \sin 7x} \right){\text{ }} \to {\text{(2)}} \\\
As we know that sinA+sinB=2sin(A+B2)cos(AB2)\sin {\text{A}} + \sin {\text{B}} = 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)
Using the above formula, equation (2) becomes

sinx+4sin3x+6sin5x+3sin7x=2sin(x+7x2)cos(x7x2)+4[2sin(3x+5x2)cos(3x5x2)]+2[2sin(5x+7x2)cos(5x7x2)] sinx+4sin3x+6sin5x+3sin7x=2sin(8x2)cos(6x2)+4[2sin(8x2)cos(2x2)]+2[2sin(12x2)cos(2x2)] sinx+4sin3x+6sin5x+3sin7x=2sin(4x)cos(3x)+8sin(4x)cos(x)+4sin(6x)cos(x) (3)  \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin \left( {\dfrac{{x + 7x}}{2}} \right)\cos \left( {\dfrac{{x - 7x}}{2}} \right) + 4\left[ {2\sin \left( {\dfrac{{3x + 5x}}{2}} \right)\cos \left( {\dfrac{{3x - 5x}}{2}} \right)} \right] + 2\left[ {2\sin \left( {\dfrac{{5x + 7x}}{2}} \right)\cos \left( {\dfrac{{5x - 7x}}{2}} \right)} \right] \\\ \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin \left( {\dfrac{{8x}}{2}} \right)\cos \left( {\dfrac{{ - 6x}}{2}} \right) + 4\left[ {2\sin \left( {\dfrac{{8x}}{2}} \right)\cos \left( {\dfrac{{ - 2x}}{2}} \right)} \right] + 2\left[ {2\sin \left( {\dfrac{{12x}}{2}} \right)\cos \left( {\dfrac{{ - 2x}}{2}} \right)} \right] \\\ \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin \left( {4x} \right)\cos \left( { - 3x} \right) + 8\sin \left( {4x} \right)\cos \left( { - x} \right) + 4\sin \left( {6x} \right)\cos \left( { - x} \right){\text{ }} \to (3) \\\

Using the formula cos(θ)=cosθ\cos \left( { - \theta } \right) = \cos \theta in equation (3), we get

sinx+4sin3x+6sin5x+3sin7x=2sin4xcos3x+8sin4xcosx+4sin6xcosx sinx+4sin3x+6sin5x+3sin7x=(2sin4xcos3x+2sin4xcosx)+2sin4xcosx+(4sin4xcosx+4sin6xcosx)  \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\cos 3x + 8\sin 4x\cos x + 4\sin 6x\cos x \\\ \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = \left( {2\sin 4x\cos 3x + 2\sin 4x\cos x} \right) + 2\sin 4x\cos x + \left( {4\sin 4x\cos x + 4\sin 6x\cos x} \right) \\\

By taking 2sin4x and 4cosx common from the first two and the last two terms in the RHS of the above equation, we get
sinx+4sin3x+6sin5x+3sin7x=2sin4x(cos3x+cosx)+2sin4xcosx+4cosx(sin4x+sin6x) (4)\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\left( {\cos 3x + \cos x} \right) + 2\sin 4x\cos x + 4\cos x\left( {\sin 4x + \sin 6x} \right){\text{ }} \to {\text{(4)}}
Using the formulas sinA+sinB=2sin(A+B2)cos(AB2)\sin {\text{A}} + \sin {\text{B}} = 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right) and cosA+cosB=2cos(A+B2)cos(AB2)\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right) in the RHS of equation (4), we get

sinx+4sin3x+6sin5x+3sin7x=2sin4x[2cos(3x+x2)cos(3xx2)]+2sin4xcosx+4cosx[2sin(4x+6x2)cos(4x6x2)] sinx+4sin3x+6sin5x+3sin7x=2sin4x[2cos(4x2)cos(2x2)]+2sin4xcosx+4cosx[2sin(10x2)cos(2x2)] sinx+4sin3x+6sin5x+3sin7x=2sin4x[2cos(2x)cos(x)]+2sin4xcosx+4cosx[2sin(5x)cos(x)] (5)  \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\left[ {2\cos \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right)} \right] + 2\sin 4x\cos x + 4\cos x\left[ {2\sin \left( {\dfrac{{4x + 6x}}{2}} \right)\cos \left( {\dfrac{{4x - 6x}}{2}} \right)} \right] \\\ \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\left[ {2\cos \left( {\dfrac{{4x}}{2}} \right)\cos \left( {\dfrac{{2x}}{2}} \right)} \right] + 2\sin 4x\cos x + 4\cos x\left[ {2\sin \left( {\dfrac{{10x}}{2}} \right)\cos \left( {\dfrac{{ - 2x}}{2}} \right)} \right] \\\ \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\left[ {2\cos \left( {2x} \right)\cos \left( x \right)} \right] + 2\sin 4x\cos x + 4\cos x\left[ {2\sin \left( {5x} \right)\cos \left( { - x} \right)} \right]{\text{ }} \to {\text{(5)}} \\\

Using the formula cos(θ)=cosθ\cos \left( { - \theta } \right) = \cos \theta in equation (5), we get

sinx+4sin3x+6sin5x+3sin7x=4sin4xcos2xcosx+2sin4xcosx+8cosxsin5xcosx sinx+4sin3x+6sin5x+3sin7x=4sin4xcos2xcosx+2sin4xcosx+8cosxsin5xcosx  \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 4\sin 4x\cos 2x\cos x + 2\sin 4x\cos x + 8\cos x\sin 5x\cos x \\\ \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 4\sin 4x\cos 2x\cos x + 2\sin 4x\cos x + 8\cos x\sin 5x\cos x \\\

Now taking 2cox common from all the terms in the RHS of the above equation, we get

sinx+4sin3x+6sin5x+3sin7x=2cosx(2sin4xcos2x+sin4x+4sin5xcosx) sinx+4sin3x+6sin5x+3sin7x=2cosx([2sin(6x+2x2)cos(6x2x2)]+sin4x+2[2sin(6x+4x2)cos(6x4x2)])  \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {2\sin 4x\cos 2x + \sin 4x + 4\sin 5x\cos x} \right) \\\ \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {\left[ {2\sin \left( {\dfrac{{6x + 2x}}{2}} \right)\cos \left( {\dfrac{{6x - 2x}}{2}} \right)} \right] + \sin 4x + 2\left[ {2\sin \left( {\dfrac{{6x + 4x}}{2}} \right)\cos \left( {\dfrac{{6x - 4x}}{2}} \right)} \right]} \right) \\\

Using the formula 2sin(A+B2)cos(AB2)=sinA+sinB2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right) = \sin {\text{A}} + \sin {\text{B}}, the above equation becomes

sinx+4sin3x+6sin5x+3sin7x=2cosx([sin6x+sin2x]+sin4x+2[sin6x+sin4x]) sinx+4sin3x+6sin5x+3sin7x=2cosx(sin6x+sin2x+sin4x+2sin6x+2sin4x) sinx+4sin3x+6sin5x+3sin7x=2cosx(sin2x+3sin4x+3sin6x) (6)  \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {\left[ {\sin 6x + \sin 2x} \right] + \sin 4x + 2\left[ {\sin 6x + \sin 4x} \right]} \right) \\\ \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {\sin 6x + \sin 2x + \sin 4x + 2\sin 6x + 2\sin 4x} \right) \\\ \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {\sin 2x + 3\sin 4x + 3\sin 6x} \right){\text{ }} \to {\text{(6)}} \\\

Now, substitute the equation (6) in equation (1), we get
I=(2cosx(sin2x+3sin4x+3sin6x)sin2x+3sin4x+3sin6x)dx I=(2cosx)dx I=2cosxdx I=2[sinx]+c I=2sinx+c  \Rightarrow {\text{I}} = \int {\left( {\dfrac{{2\cos x\left( {\sin 2x + 3\sin 4x + 3\sin 6x} \right)}}{{\sin 2x + 3\sin 4x + 3\sin 6x}}} \right)} dx \\\ \Rightarrow {\text{I}} = \int {\left( {2\cos x} \right)} dx \\\ \Rightarrow {\text{I}} = 2\int {\cos x} dx \\\ \Rightarrow {\text{I}} = 2\left[ {\sin x} \right] + c \\\ \Rightarrow {\text{I}} = 2\sin x + c \\\
Where c is the constant of integration.
Therefore, the value of the integral sinx+4sin3x+6sin5x+3sin7xsin2x+3sin4x+3sin6xdx\int {\dfrac{{\sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x}}{{\sin 2x + 3\sin 4x + 3\sin 6x}}} dx is (2sinx+c)\left( {2\sin x + c} \right).

Note: In this particular problem, we have written the terms in the numerator of the given integral in such a way that the multiples of the sine trigonometric function becomes same and then by taking that multiple common, we can use the formula sinA+sinB=2sin(A+B2)cos(AB2)\sin {\text{A}} + \sin {\text{B}} = 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right) and when all the terms are reduced we are using the inverse of this formula so that some the given integral is simplified into an easy integral.