Question
Question: Evaluate the value of the integral \(\int {\dfrac{{\sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x}}{{\sin 2...
Evaluate the value of the integral ∫sin2x+3sin4x+3sin6xsinx+4sin3x+6sin5x+3sin7xdx.
Solution
Hint: Here, we will proceed by splitting the terms in the numerator of the given integral in such a way that the formulas sinA+sinB=2sin(2A+B)cos(2A−B) and cosA+cosB=2cos(2A+B)cos(2A−B) can be used to convert the numerator in terms of the denominator of the given integral.
Complete step-by-step answer:
Let us suppose the integral I=∫(sin2x+3sin4x+3sin6xsinx+4sin3x+6sin5x+3sin7x)dx →(1)
Let us consider the numerator of the integral mentioned in equation (1), we get
sinx+4sin3x+6sin5x+3sin7x=sinx+(4sin3x+4sin5x)+(2sin5x+2sin7x)+sin7x ⇒sinx+4sin3x+6sin5x+3sin7x=(sinx+sin7x)+4(sin3x+sin5x)+2(sin5x+sin7x) →(2)
As we know that sinA+sinB=2sin(2A+B)cos(2A−B)
Using the above formula, equation (2) becomes
Using the formula cos(−θ)=cosθ in equation (3), we get
⇒sinx+4sin3x+6sin5x+3sin7x=2sin4xcos3x+8sin4xcosx+4sin6xcosx ⇒sinx+4sin3x+6sin5x+3sin7x=(2sin4xcos3x+2sin4xcosx)+2sin4xcosx+(4sin4xcosx+4sin6xcosx)By taking 2sin4x and 4cosx common from the first two and the last two terms in the RHS of the above equation, we get
⇒sinx+4sin3x+6sin5x+3sin7x=2sin4x(cos3x+cosx)+2sin4xcosx+4cosx(sin4x+sin6x) →(4)
Using the formulas sinA+sinB=2sin(2A+B)cos(2A−B) and cosA+cosB=2cos(2A+B)cos(2A−B) in the RHS of equation (4), we get
Using the formula cos(−θ)=cosθ in equation (5), we get
⇒sinx+4sin3x+6sin5x+3sin7x=4sin4xcos2xcosx+2sin4xcosx+8cosxsin5xcosx ⇒sinx+4sin3x+6sin5x+3sin7x=4sin4xcos2xcosx+2sin4xcosx+8cosxsin5xcosxNow taking 2cox common from all the terms in the RHS of the above equation, we get
⇒sinx+4sin3x+6sin5x+3sin7x=2cosx(2sin4xcos2x+sin4x+4sin5xcosx) ⇒sinx+4sin3x+6sin5x+3sin7x=2cosx([2sin(26x+2x)cos(26x−2x)]+sin4x+2[2sin(26x+4x)cos(26x−4x)])Using the formula 2sin(2A+B)cos(2A−B)=sinA+sinB, the above equation becomes
⇒sinx+4sin3x+6sin5x+3sin7x=2cosx([sin6x+sin2x]+sin4x+2[sin6x+sin4x]) ⇒sinx+4sin3x+6sin5x+3sin7x=2cosx(sin6x+sin2x+sin4x+2sin6x+2sin4x) ⇒sinx+4sin3x+6sin5x+3sin7x=2cosx(sin2x+3sin4x+3sin6x) →(6)Now, substitute the equation (6) in equation (1), we get
⇒I=∫(sin2x+3sin4x+3sin6x2cosx(sin2x+3sin4x+3sin6x))dx ⇒I=∫(2cosx)dx ⇒I=2∫cosxdx ⇒I=2[sinx]+c ⇒I=2sinx+c
Where c is the constant of integration.
Therefore, the value of the integral ∫sin2x+3sin4x+3sin6xsinx+4sin3x+6sin5x+3sin7xdx is (2sinx+c).
Note: In this particular problem, we have written the terms in the numerator of the given integral in such a way that the multiples of the sine trigonometric function becomes same and then by taking that multiple common, we can use the formula sinA+sinB=2sin(2A+B)cos(2A−B) and when all the terms are reduced we are using the inverse of this formula so that some the given integral is simplified into an easy integral.