Solveeit Logo

Question

Question: Evaluate the value of the following integral \[\int{\dfrac{{{\sin }^{6}}x}{{{\cos }^{8}}x}dx}\]...

Evaluate the value of the following integral sin6xcos8xdx\int{\dfrac{{{\sin }^{6}}x}{{{\cos }^{8}}x}dx}

Explanation

Solution

In this problem, we have to integrate the given integral expression. We can first simplify the terms using trigonometric identity. We can replace the term for sin6xcos6x\dfrac{{{\sin }^{6}}x}{{{\cos }^{6}}x}, we can then replace the remaining term with its equivalent secant term. We can then use the substitution formula and assume a variable for tangent and integrate it, to get the evaluated value of the given integral.

Complete step by step answer:
Here we have to integrate the given integral,
sin6xcos8xdx\Rightarrow \int{\dfrac{{{\sin }^{6}}x}{{{\cos }^{8}}x}dx}
We can now write it as,
tan6xsec2xdx\Rightarrow \int{{{\tan }^{6}}x{{\sec }^{2}}xdx}…… (1)
Since, sin6xcos6x=tan6x,1cos2x=sec2x\dfrac{{{\sin }^{6}}x}{{{\cos }^{6}}x}={{\tan }^{6}}x,\dfrac{1}{{{\cos }^{2}}x}={{\sec }^{2}}x
We can now integrate the above step using the substitution method.
We know that in the substitution method, we can assume a variable for the term in the integral and substitute the equivalent variable in the integral.
We can now assume the variable t.
Let t=tanxt=\tan x..……. (2)
Then , dt=sec2xdxdt={{\sec }^{2}}xdx
We can now substitute the above values in the integral (1), we get
t6dt\Rightarrow \int{{{t}^{6}}dt}
We can now integrate the above step, we get
t77+C\Rightarrow \dfrac{{{t}^{7}}}{7}+C
Since, tndt=tn+1n+1+C\int{{{t}^{n}}dt=\dfrac{{{t}^{n+1}}}{n+1}+C}.
We can now substitute the value of t in the above step, we get
tan7x7+C\Rightarrow \dfrac{{{\tan }^{7}}x}{7}+C
Therefore, sin6xcos8xdx=tan7x7+C\int{\dfrac{{{\sin }^{6}}x}{{{\cos }^{8}}x}dx}=\dfrac{{{\tan }^{7}}x}{7}+C

Note: We should always remember that if we have higher degrees for any trigonometric sines and cosines, we can use the trigonometric identities and formulas to simplify them and continue the problem, here we have used the formula, sinnxcosnx=tannx,1cosnx=secnx\dfrac{{{\sin }^{n}}x}{{{\cos }^{n}}x}={{\tan }^{n}}x,\dfrac{1}{{{\cos }^{n}}x}={{\sec }^{n}}xto simplify the step. We should also know some basic integral formulas like tndt=tn+1n+1+C\int{{{t}^{n}}dt=\dfrac{{{t}^{n+1}}}{n+1}+C}, to integrate the given data.