Solveeit Logo

Question

Question: Evaluate the value of integral \[\int{{{a}^{-x}}dx}\]....

Evaluate the value of integral axdx\int{{{a}^{-x}}dx}.

Explanation

Solution

To solve this question we will use the formula of integration of aydy\int{{{a}^{y}}dy} where a is any real number. The number is given as,
aydy=ayloga+c\int{{{a}^{y}}dy}=\dfrac{{{a}^{y}}}{\log a}+c
After proper substitution we will try to obtain ax{{a}^{-x}} from ay{{a}^{y}} to get our result.

Complete step by step answer:
Given axdx\int{{{a}^{-x}}dx}
Let I=axdxI=\int{{{a}^{-x}}dx}
Let us assume, y=xy=-x.
Differentiating both sides we get,
dy=dxdy=-dx
Multiplying by (-1) on both sides we get,
dy=dx-dy=dx
Substituting these values in I we get,
I=ay(dy)I=\int{{{a}^{y}}\left( -dy \right)}
I=aydy\Rightarrow I=-\int{{{a}^{y}}dy} - (1)
Now we finally use a formula of integration stated as,
aydy=ayloga+c\int{{{a}^{y}}dy}=\dfrac{{{a}^{y}}}{\log a}+c
where c is a constant of integration.
aydy=ayloga+c\Rightarrow \int{{{a}^{y}}dy}=\dfrac{{{a}^{y}}}{\log a}+c
Using this in equation (1) we get,
I=aydyI=-\int{{{a}^{y}}dy}
I=ayloga+cI=-\dfrac{{{a}^{y}}}{\log a}+c, where c is constant of integration
Now replacing x=y-x=y we get,
I=axloga+cI=-\dfrac{{{a}^{-x}}}{\log a}+c
\therefore The value of Integral is - axloga+c\dfrac{{{a}^{-x}}}{\log a}+c, where c is constant of integration

Note:
Students might get confused with xadx\int{{{x}^{a}}dx} and axdx\int{{{a}^{x}}dx}.
Always remember that,
xadx=xa+1a+1+c\int{{{x}^{a}}dx}=\dfrac{{{x}^{a+1}}}{a+1}+c
And axdx=axloga+c\int{{{a}^{x}}dx}=\dfrac{{{a}^{x}}}{\log a}+c
Where c is constant of integration