Solveeit Logo

Question

Question: Evaluate the value of \(\int {{x^x}\left( {1 + \log x} \right)dx}\)....

Evaluate the value of xx(1+logx)dx\int {{x^x}\left( {1 + \log x} \right)dx}.

Explanation

Solution

Here, we are asked to find the value of xx(1+logx)dx\int {{x^x}\left( {1 + \log x} \right)dx} .
Let I=xx(1+logx)dxI = \int {{x^x}\left( {1 + \log x} \right)dx} .
Then, let xx=t{x^x} = t and differentiate on both sides and simplify the differentiation.
Thus, substitute the values and find the required answer.

Complete step by step solution:
Here, we are asked to find the value of xx(1+logx)dx\int {{x^x}\left( {1 + \log x} \right)dx} .
Let I=xx(1+logx)dxI = \int {{x^x}\left( {1 + \log x} \right)dx}
To solve the given integral, let xx=t{x^x} = t .
d(xx)=dt\therefore d\left( {{x^x}} \right) = dt
Now, xx{x^x} can also be written as exlogx{e^{x\log x}} .
d(exlogx)=dt exlogx(x×1x+logx)=dt xx(1+logx)dx=dt  \therefore d\left( {{e^{x\log x}}} \right) = dt \\\ \therefore {e^{x\log x}}\left( {x \times \dfrac{1}{x} + \log x} \right) = dt \\\ \therefore {x^x}\left( {1 + \log x} \right)dx = dt \\\
Thus, I=dtI = \int {dt}
I=t+C I=xx+C \therefore I = t + C \\\ \therefore I = {x^x} + C

Thus, the value of the given integral is xx(1+logx)dx=xx+C\int {{x^x}\left( {1 + \log x} \right)dx} = {x^x} + C.

Note:
The properties used in the question:

  1. ab=ebloga{a^b} = {e^{b\log a}}
  2. ddxef(x)=ef(x)f(x)\dfrac{d}{{dx}}{e^{f\left( x \right)}} = {e^{f\left( x \right)}} \cdot f'\left( x \right)
  3. ddx[f(x)g(x)]=f(x)g(x)+g(x)f(x)\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)g'\left( x \right) + g\left( x \right)f'\left( x \right)
  4. dx=x+C\int {dx} = x + C